7,735 research outputs found

    Asymmetric scattering and non-orthogonal mode patterns in optical micro-spirals

    Full text link
    Quasi-bound states in an open system do in general not form an orthogonal and complete basis. It is, however, expected that the non-orthogonality is weak in the case of well-confined states except close to a so-called exceptional point in parameter space. We present numerical evidence showing that for passive optical microspiral cavities the parameter regime where the non-orthogonality is significant is rather broad. Here we observe almost-degenerate pairs of well-confined modes which are highly non-orthogonal. Using a non-Hermitian model Hamiltonian we demonstrate that this interesting phenomenon is related to the asymmetric scattering between clockwise and counterclockwise propagating waves in the spiral geometry. Numerical simulations of ray dynamics reveal a clear ray-wave correspondence.Comment: 8 pages, 10 figure

    Two Circular-Rotational Eigenmodes in Vortex Gyrotropic Motions in Soft Magnetic Nanodots

    Get PDF
    We found, by micromagnetic numerical and analytical calculations, that the clockwise (CW) and counterclockwise (CCW) circular-rotational motions of a magnetic vortex core in a soft magnetic circular nanodot are the elementary eigenmodes existing in the gyrotropic motion with respect to the corresponding CW and CCW circular-rotational-field eigenbasis. Any steady-state vortex gyrotropic motions driven by a linearly polarized oscillating in-plane magnetic field in the linear regime can be perfectly understood according to the superposition of the two circular eigenmodes, which show asymmetric resonance characteristics reflecting the vortex polarization. The relative magnitudes in the amplitude and phase between the CCW and CW eigenmodes determine the elongation and orientation of the orbital trajectories of the vortex core motions, respectively, which trajectories vary with the polarization and chirality of the given vortex as well as the field frequency across the resonance frequency.Comment: 30 pages, 7 figure
    corecore