1,182 research outputs found

    Dalton's Law vs, Amagat's Law for the Mixture of Real Gases

    Get PDF
    1995We are familiar with English scientist John Dalton who proposed the existence of atoms. He also found the law of partial pressure from his experiment on the mixture of gases. Actually Dalton performed the above gas experiment in order to suggest the atomic theory of matter. In modern terminology a fundamental property of gas mixtures discovered by Dalton (1801) is: the pressure of a mixture of gases is equal to the sum of the pressures each of its components would exert if alone in the volume of the mixture at the same temperature. Thus Dalton's law implies that each component acts independently in its contribution to the total pressure, or, more picturesquely, that "every gas is a vacuum to every other gas." Dalton's law can be stated more concisely in terms of partial pressure. Thus Dalton's law can be written

    The role of PET/CT for evaluating breast cancer

    Get PDF
    Positron emission tomography combined with computed tomography (PET/CT) has been receiving increasing attention during the recent years for making the diagnosis, for determining the staging and for the follow-up of various malignancies. The PET/CT findings of 58 breast cancer patients (age range: 34-79 years old, mean age: 50 years) were retrospectively compared with the PET or CT scans alone. PET/CT was found to be better than PET or CT alone for detecting small tumors or multiple metastases, for accurately localizing lymph node metastasis and for monitoring the response to chemotherapy in breast cancer patients

    Demonstration of a Bias Tunable Quantum Dots-in-a-well Focal Plane Array

    Get PDF
    Infrared detectors based on quantum wells and quantum dots have attracted a lot of attention in the past few years. Our previous research has reported on the development of the first generation of quantum dots-in-a-well (DWELL) focal plane arrays, which are based on InAs quantum dots embedded in an InGaAs well having GaAs barriers. This focal plane array has successfully generated a two-color imagery in the mid-wave infrared (i.e. 3–5 μm) and the long-wave infrared (i.e. 8–12 μm) at a fixed bias voltage. Recently, the DWELL device has been further modified by embedding InAs quantum dots in InGaAs and GaAs double wells with AlGaAs barriers, leading to a less strained InAs/InGaAs/GaAs/AlGaAs heterostructure. This is expected to improve the operating temperature while maintaining a low dark current level. This paper examines 320 × 256 double DWELL based focal plane arrays that have been fabricated and hybridized with an Indigo 9705 read-out integrated circuit using Indium-bump (flip-chip) technology. The spectral tunability is quantified by examining images and determining the transmittance ratio (equivalent to the photocurrent ratio) between mid-wave and long-way infrared filter targets. Calculations were performed for a bias range from 0.3 to 1.0 V. The results demonstrate that the mid-wave transmittance dominates at these low bias voltages, and the transmittance ratio continuously varies over different applied biases. Additionally, radiometric characterization, including array uniformity and measured noise equivalent temperature difference for the double DWELL devices is computed and compared to the same results from the original first generation DWELL. Finally, higher temperature operation is explored. Overall, the double DWELL devices had lower noise equivalent temperature difference and higher uniformity, and worked at higher temperature (70 K and 80 K) than the first generation DWELL device

    Defect states in hybrid solar cells consisting of Sb2S3 quantum dots and TiO2 nanoparticles

    Get PDF
    We have studied defect states in an organic-inorganic hybrid solar cell containing Sb2S3 quantum dots (QDs) and TiO2 nanoparticles (NPs) by using deep level transient spectroscopy (DLTS). An Au electrode was deposited as a Schottky contact on the sample, where the Sb2S3 QDs were distributed on the surface of TiO2 NPs by chemical synthesis. The activation energy and capture-cross section of an interface state between the Sb2S3 QDs and the TiO2 NPs were found to be about 0.78 eV and 2.21 x 10(-9) cm(-2), respectively. Also, the densities of this interface trap under a measurement voltage of -1 V were approximately 2.5 x 10(17) cm(-3). Based on these results, the interface trap was positioned around E-c - 1.03 eV below the conduction band edge of Sb2S3 QD. Thus, the external quantum efficiency of the solar cell was affected because of its role as a recombination center for carriers generated from Sb2S3 QDs. (C) 2013 AIP Publishing LLCclos

    Echovirus 30 Induced Neuronal Cell Death through TRIO-RhoA Signaling Activation

    Get PDF
    BACKGROUND: Echovirus 30 (Echo30) is one of the most frequently identified human enteroviruses (EVs) causing aseptic meningitis and encephalitis. However the mechanism underlying the pathogenesis of Echo30 infection with significant clinical outcomes is not completely understood. The aim of this investigation is to illustrate molecular pathologic alteration in neuronal cells induced by Echo30 infection using clinical isolate from young patient with neurologic involvement. METHODOLOGY/PRINCIPAL FINDINGS: To characterize the neuronal cellular response to Echo30 infection, we performed a proteomic analysis based on two-dimensional gel electrophoresis (2-DE) and MALDI-TOF/TOF Mass Spectrophotometric (MS) analysis. We identified significant alteration of several protein expression levels in Echo30-infected SK-N-SH cells. Among these proteins, we focused on an outstanding up-regulation of Triple functional domain (TRIO) in Echo30-infected SK-N-SH cells. Generally, TRIO acts as a key component in the regulation of axon guidance and cell migration. In this study, we determined that TRIO plays a role in the novel pathways in Echo30 induced neuronal cell death. CONCLUSIONS/SIGNIFICANCE: Our finding shows that TRIO plays a critical role in neuronal cell death by Echo30 infection. Echo30 infection activates TRIO-guanine nucleotide exchange factor (GEF) domains (GEFD2) and RhoA signaling in turn. These results suggest that Echo30 infection induced neuronal cell death by activation of the TRIO-RhoA signaling. We expect the regulation of TRIO-RhoA signaling may represent a new therapeutic approach in treating aseptic meningitis and encephalitis induced by Echo30
    corecore