11,063 research outputs found

    A noncontact measurement technique for the density and thermal expansion coefficient of solid and liquid materials

    Get PDF
    A noncontact measurement technique for the density and the thermal expansion coefficient of refractory materials in their molten as well as solid phases is presented. This technique is based on the video image processing of a levitated sample. Experiments were performed using the high-temperature electrostatic levitator (HTESL) at the Jet Propulsion Laboratory in which 2–3 mm diam samples can be levitated, melted, and radiatively cooled in vacuum. Due to the axisymmetric nature of the molten samples when levitated in the HTESL, a rather simple digital image analysis can be employed to accurately measure the volumetric change as a function of temperature. Density and the thermal expansion coefficient measurements were made on a pure nickel sample to test the accuracy of the technique in the temperature range of 1045–1565 °C. The result for the liquid phase density can be expressed by rho=8.848+(6.730×10^−4)×T (°C) g/cm^3 within 0.8% accuracy, and the corresponding thermal expansion coefficient can be expressed by beta=(9.419×10^−5) −(7.165×10^−9)×T (°C) K^−1 within 0.2% accuracy

    Semiconductor quantum dots in high magnetic fields: The composite-fermion view

    Full text link
    We review and extend the composite fermion theory for semiconductor quantum dots in high magnetic fields. The mean-field model of composite fermions is unsatisfactory for the qualitative physics at high angular momenta. Extensive numerical calculations demonstrate that the microscopic CF theory, which incorporates interactions between composite fermions, provides an excellent qualitative and quantitative account of the quantum dot ground state down to the largest angular momenta studied, and allows systematic improvements by inclusion of mixing between composite fermion Landau levels (called Λ\Lambda levels).Comment: 13 pages, 8 figure
    corecore