19 research outputs found

    Results of Endoscopic Dacryocystorhinostomy under Local Anesthesia with Minimal Sedation

    Get PDF
    Purpose. We evaluated the tolerability and efficacy of endoscopic dacryocystorhinostomy (Endo-DCR) in patients treated in the leaning position and under local anesthesia with minimal sedation (LAS). Study Design. Questionnaire to determine subjective success of Endo-DCR. Methods. From May 2013 to August 2014, a total of 95 eyes with epiphora presented to the Myoung Eye Plastic Surgery Clinic in Seoul, Korea, and were treated with Endo-DCR under LAS. Three nerve blocks were administered to achieve local anesthesia. Postoperatively, the wound site was packed with Nasopore to control bleeding and promote wound healing. Outcome measures included a patient questionnaire completed on postoperative day 7 to evaluate intraoperative and postoperative pain based on the VAS (0 to 10). Results. Mean intraoperative and postoperative pain scores were 1.03 and 1.64, respectively, for 95 eyes. Of the 95 eyes treated, the patients in 82 eyes (86.31%) reported that they would prefer LAS over GA for a repeat Endo-DCR. The subjective and objective surgical success rates were 90.14% and 95.77%, respectively. Conclusions. Endo-DCR carried out under LAS with the patient in the leaning position is more useful, efficient, and feasible than Endo-DCR performed under GA with the patient in the supine position

    A novel pathogen detection system based on high-resolution CE-SSCP using a triblock copolymer matrix

    No full text
    Although CE-SSCP analysis combined with 16S ribosomal RNA gene-specific PCR has enormous potential as a simple and versatile pathogen detection technique, low resolution of CE-SSCP causes the limited application. Among the experimental conditions affecting the resolution, the polymer matrix is considered to be most critical to improve the resolution of CE-SSCP analysis. However, due to the peak broadening caused by the interaction between hydrophobic moiety of polymer matrices and DNA, conventional polymer matrices are not ideal for CE-SSCP analysis. A poly(ethyleneoxide)-poly(propyleneoxide)-poly(ethyleneoxide) (PEO-PPO-PEO) triblock copolymer, with dynamic coating ability and a propensity to form micelles to minimize exposure of hydrophobic PPO block to DNA, can be an alternative matrix. In this study, we examined the resolution of CE-SSCP analysis using the PEO-PPO-PEO triblock copolymer as the polymer matrix and four same-sized DNA fragments of similar sequence content. Among 48 commercially available PEO-PPO-PEO triblock copolymers, three were selected due to their transparency in the operable range of viscosity and PEO137PPO 43PEO137 exhibited the most effective separation. Significant improvement in resolution allowed discrimination of the similar sequences, thus greatly facilitated CE-SSCP analysis compared to the conventional polymer matrix. The results indicate that PEO-PPO-PEO triblock copolymer may serve as an ideal matrix for high-resolution CE-SSCP analysis. © 2010 Wiley-VCH Verlag GmbH & Co. KGaA.N

    A novel pathogen detection system based on high-resolution CE-SSCP using a triblock copolymer matrix

    No full text
    Although CE-SSCP analysis combined with 16S ribosomal RNA gene-specific PCR has enormous potential as a simple and versatile pathogen detection technique, low resolution of CE-SSCP causes the limited application. Among the experimental conditions affecting the resolution, the polymer matrix is considered to be most critical to improve the resolution of CE-SSCP analysis. However, due to the peak broadening caused by the interaction between hydrophobic moiety of polymer matrices and DNA, conventional polymer matrices are not ideal for CE-SSCP analysis. A poly(ethyleneoxide)-poly(propyleneoxide)-poly(ethyleneoxide) (PEO-PPO-PEO) triblock copolymer, with dynamic coating ability and a propensity to form micelles to minimize exposure of hydrophobic PPO block to DNA, can be an alternative matrix. In this study, we examined the resolution of CE-SSCP analysis using the PEO-PPO-PEO triblock copolymer as the polymer matrix and four same-sized DNA fragments of similar sequence content. Among 48 commercially available PEO-PPO-PEO triblock copolymers, three were selected due to their transparency in the operable range of viscosity and PEO137PPO43PEO137 exhibited the most effective separation. Significant improvement in resolution allowed discrimination of the similar sequences, thus greatly facilitated CE-SSCP analysis compared to the conventional polymer matrix. The results indicate that PEO-PPO-PEO triblock copolymer may serve as an ideal matrix for high-resolution CE-SSCP analysis.X112323sciescopu
    corecore