6,068 research outputs found

    Avalanches in a Bose-Einstein condensate

    Get PDF
    Collisional avalanches are identified to be responsible for an 8-fold increase of the initial loss rate of a large 87-Rb condensate. We show that the collisional opacity of an ultra-cold gas exhibits a critical value. When exceeded, losses due to inelastic collisions are substantially enhanced. Under these circumstances, reaching the hydrodynamic regime in conventional BEC experiments is highly questionable.Comment: 4 pages, 2 figures, 1 tabl

    Electron orbital valves made of multiply connected armchair carbon nanotubes with mirror-reflection symmetry: tight-binding study

    Full text link
    Using the tight-binding method and the Landauer-B\"{u}ttiker conductance formalism, we demonstrate that a multiply connected armchair carbon nanotube with a mirror-reflection symmetry can sustain an electron current of the π\pi-bonding orbital while suppress that of the π\pi-antibonding orbital over a certain energy range. Accordingly, the system behaves like an electron orbital valve and may be used as a scanning tunneling microscope to probe pairing symmetry in d-wave superconductors or even orbital ordering in solids which is believed to occur in some transition-metal oxides.Comment: 4 figures, 12 page

    The Globular Cluster System of M60 (NGC 4649). II. Kinematics of the Globular Cluster System

    Full text link
    We present a kinematic analysis of the globular cluster (GC) system in the giant elliptical galaxy (gE) M60 in the Virgo cluster. Using the photometric and spectroscopic database of 121 GCs (83 blue GCs and 38 red GCs), we have investigated the kinematics of the GC system. We have found that the M60 GC system shows a significant overall rotation. The rotation amplitude of the blue GCs is slightly smaller than or similar to that of the red GCs, and their angles of rotation axes are similar. The velocity dispersions about the mean velocity and about the best fit rotation curve for the red GCs are marginally larger than those for the blue GCs. Comparison of observed stellar and GC velocity dispersion profiles with those calculated from the stellar mass profile shows that the mass-to-light ratio should be increased as the galactocentric distance increases, indicating the existence of an extended dark matter halo. The entire sample of GCs in M60 is found to have a tangentially biased velocity ellipsoid unlike the GC systems in other gEs. Two subsamples appear to have different velocity ellipsoids. The blue GC system has a modest tangentially biased velocity ellipsoid, while the red GC system has a modest radially biased or an isotropic velocity ellipsoid. From the comparison of the kinematic properties of the M60 GC system to those of other gEs (M87, M49, NGC 1399, NGC 5128, and NGC 4636), it is found that the velocity dispersion of the blue GC system is similar to or larger than that of the red GC system except for M60, and the rotation of the GC system is not negligible. The entire sample of each GC system shows an isotropic velocity ellipsoid except for M60, while the subsamples show diverse velocity ellipsoids. We discuss the implication of these results for the formation models of the GC system in gEs.Comment: 48 pages, 16 figures. To appear in Ap

    Stellar Populations of the Sagittarius Dwarf Irregular Galaxy

    Get PDF
    We present deep BVRI CCD photometry of the stars in the dwarf irregular galaxy SagDIG. The color-magnitude diagrams of the measured stars in SagDIG show a blue plume which consists mostly of young stellar populations, and a well-defined red giant branch (RGB). The foreground reddening of SagDIG is estimated to be E(B-V)=0.06. The tip of the RGB is found to be at I_(TRGB)=21.55 +/- 0.10 mag. From this the distance to this galaxy is estimated to be d = 1.18 +/- 0.10 Mpc. This result, combined with its velocity information, shows that it is a member of the Local Group. The mean metallicity of the red giant branch is estimated to be [Fe/H] < -2.2 dex. This shows that SagDIG is one of the most metal-poor galaxies. Total magnitudes of SagDIG (< r_H (= 107 arcsec)) are derived to be B^T=13.99 mag, V^T=13.58 mag, R^T=13.19 mag, and I^T=12.88 mag, and the corresponding absolute magnitudes are M_B=-11.62 mag, M_V=-11.97 mag, M_R=-12.33 mag, and M_I=-12.60 mag. Surface brightness profiles of the central part of SagDIG are approximately fit by a King model with a core concentration parameter c = log (r_t / r_c) ~ 0.6, and those of the outer part follow an exponential law with a scale length of 37 arcsec. The central surface brightness is measured to be mu_B (0) = 24.21 mag arcsec^(-2) and mu_V (0) =23.91 mag arcsec^(-2). The magnitudes and colors of the brightest blue and red stars in SagDIG (BSG and RSG) are measured to be, respectively, _BSG = 19.89 +/- 0.13 mag, _BSG = 0.08 +/- 0.07 mag, _RSG = 20.39 +/- 0.10 mag, and _RSG = 1.29 +/- 0.12 mag. The corresponding absolute magnitudes are derived to be _BSG = -5.66 mag and _RSG = -5.16 mag, which are about one magnitude fainter than those expected from conventional correlations with galaxy luminosity.Comment: 16 pages(AASLaTeX), 10 Postscript figures, Accepted for publication in Astronomical Journal, 200

    Quantum Fields on the Groenewold-Moyal Plane: C, P, T and CPT

    Full text link
    We show that despite the inherent non-locality of quantum field theories on the Groenewold-Moyal (GM) plane, one can find a class of C{\bf C}, P{\bf P}, T{\bf T} and CPT{\bf CPT} invariant theories. In particular, these are theories without gauge fields or with just gauge fields and no matter fields. We also show that in the presence of gauge fields, one can have a field theory where the Hamiltonian is C{\bf C} and T{\bf T} invariant while the SS-matrix violates P{\bf P} and CPT{\bf CPT}. In non-abelian gauge theories with matter fields such as the electro-weak and QCDQCD sectors of the standard model of particle physics, C{\bf C}, P{\bf P}, T{\bf T} and the product of any pair of them are broken while CPT{\bf CPT} remains intact for the case Ξ0i=0\theta^{0i} =0. (Here xΌ⋆xΜ−xΜ⋆xÎŒ=iΞΌΜx^{\mu} \star x^{\nu} - x^{\nu} \star x^{\mu} = i \theta^{\mu \nu}, xÎŒx^{\mu}: coordinate functions, ΞΌΜ=−ΞΜΌ=\theta^{\mu \nu} = -\theta^{\nu \mu}= constant.) When Ξ0i≠0\theta^{0i} \neq 0, it contributes to breaking also P{\bf P} and CPT{\bf CPT}. It is known that the SS-matrix in a non-abelian theory depends on ΞΌΜ\theta^{\mu \nu} only through Ξ0i\theta^{0i}. The SS-matrix is frame dependent. It breaks (the identity component of the) Lorentz group. All the noncommutative effects vanish if the scattering takes place in the center-of-mass frame, or any frame where Ξ0iPiin=0\theta^{0i}P^{\textrm{in}}_{i} = 0, but not otherwise. P{\bf P} and CPT{\bf CPT} are good symmetries of the theory in this special case.Comment: 18 pages, 1 figure, revised, 2 references adde

    Condensation and Clustering in the Driven Pair Exclusion Process

    Full text link
    We investigate particle condensation in a driven pair exclusion process on one- and two- dimensional lattices under the periodic boundary condition. The model describes a biased hopping of particles subject to a pair exclusion constraint that each particle cannot stay at a same site with its pre-assigned partner. The pair exclusion causes a mesoscopic condensation characterized by the scaling of the condensate size mcon∌NÎČm_{\rm con}\sim N^\beta and the number of condensates Ncon∌NαN_{\rm con}\sim N^\alpha with the total number of sites NN. Those condensates are distributed randomly without hopping bias. We find that the hopping bias generates a spatial correlation among condensates so that a cluster of condensates appears. Especially, the cluster has an anisotropic shape in the two-dimensional system. The mesoscopic condensation and the clustering are studied by means of numerical simulations.Comment: 4 pages, 5 figure

    Magneto-transport and electronic structures in MoSi2_2 bulks and thin films with different orientations

    Full text link
    We report a comprehensive study of magneto-transport properties in MoSi2_2 bulk and thin films. Textured MoSi2_2 thin films of around 70 nm were deposited on silicon substrates with different orientations. Giant magnetoresistance of 1000% was observed in sintered bulk samples while MoSi2_2 single crystals exhibit a magnetoresistance (MR) value of 800% at low temperatures. At the low temperatures, the MR of the textured thin films show weak anti-localization behaviour owing to the spin orbit coupling effects. Our first principle calculation show the presence of surface states in this material. The resistivity of all the MoSi2_2 thin films is significantly low and nearly independent of the temperature, which is important for electronic devices

    Experimental ionization of atomic hydrogen with few-cycle pulses

    Get PDF
    We present the first experimental data on strong-field ionization of atomic hydrogen by few-cycle laser pulses. We obtain quantitative agreement at the 10% level between the data and an {\it ab initio} simulation over a wide range of laser intensities and electron energies
    • 

    corecore