901 research outputs found
An exploratory study of heavy domain wall fermions on the lattice
We report on an exploratory study of domain wall fermions (DWF) as a lattice
regularisation for heavy quarks. Within the framework of quenched QCD with the
tree-level improved Symanzik gauge action we identify the DWF parameters which
minimise discretisation effects. We find the corresponding effective 4
overlap operator to be exponentially local, independent of the quark mass. We
determine a maximum bare heavy quark mass of , below which the
approximate chiral symmetry and O(a)-improvement of DWF are sustained. This
threshold appears to be largely independent of the lattice spacing. Based on
these findings, we carried out a detailed scaling study for the heavy-strange
meson dispersion relation and decay constant on four ensembles with lattice
spacings in the range . We observe very mild
scaling towards the continuum limit. Our findings establish a sound basis for
heavy DWF in dynamical simulations of lattice QCD with relevance to Standard
Model phenomenology.Comment: 23 pages, 8 figure
CT attenuation analysis of carotid intraplaque hemorrhage
Background and Purpose: Intraplaque hemorrhage is considered a leading parameter of carotid plaque vulnerability. Our purpose was to assess the CT characteristics of intraplaque hemorrhage with histopathologic correlation to identify features that allow for confirming or ruling out the intraplaque hemorrhage. MATERIALS AND METHODS: This retrospective study included 91 patients (67 men; median age, 657 years; age range, 41-83 years) who underwent CT angiography and carotid endarterectomy from March 2010 to May 2013. Histopathologic analysis was performed for the tissue characterization and identification of intraplaque hemorrhage. Two observers assessed the plaque's attenuation values by using an ROI (≤1 and ≥2 mm2). Receiver operating characteristic curve, Mann-Whitney, and Wilcoxon analyses were performed. RESULTS: A total of 169 slices were assessed (59 intraplaque hemorrhage, 63 lipid-rich necrotic core, and 47 fibrous); the average values of the intraplaque hemorrhage, lipid-rich necrotic core, and fibrous tissue were 17.475 Hounsfield units (HU) and 18.407 HU, 39.476 HU and 48.048 HU, and 91.66 HU and 93.128 HU, respectively, before and after the administration of contrast medium. The Mann-Whitney test showed a statistically significant difference of HU values both in basal and after the administration of contrast material phase. Receiver operating characteristic analysis showed a statistical association between intraplaque hemorrhage and low HU values, and a threshold of 25 HU demonstrated the presence of intraplaque hemorrhage with a sensitivity and specificity of 93.22% and 92.73%, respectively. The Wilcoxon test showed that the attenuation of the plaque before and after administration of contrast material is different (intraplaque hemorrhage, lipid-rich necrotic core, and fibrous tissue had P values of .006, .0001, and .018, respectively). CONCLUSIONS: The results of this preliminary study suggest that CT can be used to identify the presence of intraplaque hemorrhage according to the attenuation. A threshold of 25 HU in the volume acquired after the administration of contrast medium is associated with an optimal sensitivity and specificity. Special care should be given to the correct identification of the ROI
Electrical Characterization of SiPM as a Function of Test Frequency and Temperature
Silicon Photomultipliers (SiPM) represent a promising alternative to
classical photomultipliers, for instance, for the detection of photons in high
energy physics and medical physics. In the present work, electrical
characterizations of test devices - manufactured by ST Microelectronics - are
presented. SiPMs with an area of 3.5x3.5 micron^2 and a cell pitch of 54 micron
were manufactured as arrays of 64x64 cells and exhibiting a fill factor of 31%.
The capacitance of SiPMs was measured as a function of reverse bias voltage at
frequencies ranging from from 20 Hz up to 1 MHz and temperatures from 300 K
down to 85 K. While leakage currents were measured at temperatures from 400 K
down to 85 K. Thus, the threshold voltage - i.e., voltage corresponding to that
at which the multiplication regime for the leakage current begins - could be
determined as a function of temperature. Finally, an electrical model suited to
reproduce the dependence of the frequency dependence of capacitance is
presented.Comment: To appear on the Proceedings of the 13th ICATPP Conference on
Astroparticle, Particle, Space Physics and Detectors for Physics
Applications, Villa Olmo (Como, Italy), 3-7 October, 2011, to be published by
World Scientific (Singapore
Theoretical evidences for enhanced superconducting transition temperature of CaSi in a high-pressure AlB phase
By means of first-principles calculations, we studied stable lattice
structures and estimated superconducting transition temperature of CaSi at
high pressure. Our simulation showed stability of the AlB structure in a
pressure range above 17 GPa. In this structure, doubly degenerated optical
phonon modes, in which the neighboring silicon atoms oscillate alternately in a
silicon plane, show prominently strong interaction with the conduction
electrons. In addition there exists a softened optical mode (out-of-plan motion
of silicon atoms), whose strength of the electron-phonon interaction is nearly
the same as the above mode. The density of states at the Fermi level in the
AlB structure is higher than that in the trigonal structure. These findings
and the estimation of the transition temperature strongly suggest that higher
is expected in the AlB structure than the trigonal structures
which are known so far.Comment: 6 pages and 11 figure
The kaon semileptonic form factor in Nf=2+1 domain wall lattice QCD with physical light quark masses
We present the first calculation of the kaon semileptonic form factor with
sea and valence quark masses tuned to their physical values in the continuum
limit of 2+1 flavour domain wall lattice QCD. We analyse a comprehensive set of
simulations at the phenomenologically convenient point of zero momentum
transfer in large physical volumes and for two different values of the lattice
spacing. Our prediction for the form factor is f+(0)=0.9685(34)(14) where the
first error is statistical and the second error systematic. This result can be
combined with experimental measurements of K->pi decays for a determination of
the CKM-matrix element for which we predict |Vus|=0.2233(5)(9) where the first
error is from experiment and the second error from the lattice computation.Comment: 21 pages, 7 figures, 6 table
Relationship between white matter hyperintensities volume and the circle of Willis configurations in patients with carotid artery pathology
Purpose
We aimed to assess if there is a difference of distribution and volume of white matter hyperintensities (WMH) in the brain according to the Circle of Willis (CoW) configuration in patients with carotid artery pathology.
Material and methods
One-hundred consecutive patients (79 males, 21 females; mean age 70 years; age range 46–84 years) that underwent brain MRI before carotid endarterectomy (CEA) were included. FLAIR-WMH lesion volume was performed using a semi-automated segmentation technique and the status of the circle of Willis was assessed by two neuroradiologists in consensus.
Results
We found a prevalence of 55% of variants in the CoW configuration; 22 cases had one variants (40%); 25 cases had two variants (45.45%) and 8 cases showed 3 variants (14.55%). The configuration that was associated with the biggest WMH volume and number of lesions was the A1 + PcoA + PcoA. The PcoA variants were the most prevalent and there was no statistically significant difference in number of lesions and WMH for each vascular territory assessed and the same results were found for AcoA and A1 variants.
Conclusion
Results of our study suggest that the more common CoW variants are not associated with the presence of an increased WMH or number of lesions whereas uncommon configurations, in particular when 2 or more segment are missing increase the WMH volume and number of lesions. The WHM volume of the MCA territory seems to be more affected by the CoW configuration
Long term survival after evidence based treatment of acute myocardial infarction and revascularisation: follow-up of population based Perth MONICA cohort, 1984-2005
Objective To examine trends in long term survival in patients alive 28 days after myocardial infarction and the impact of evidence based medical treatments and coronary revascularisation during or near the event
A Demonstration Experiment for the Forecast of Magnetic Field and Field Errors in the Large Hadron Collider
In order to reduce the burden on the beam-based feedback, the Large Hadron Collider control system is equipped with the Field Description for the LHC (FiDeL) which provides a forecast of the magnetic field and the multipole field errors. FiDeL has recently been extensively tested at CERN to determine main field tracking, multipole forecasting and compensation accuracy. This paper describes the rationale behind the tests, the procedures employed to power the main magnets and their correctors, and finally, we present the results obtained. We also give an indication of the prediction accuracy that the system can deliver during the operation of the LHC and we discuss the implications that these will have on the machine performance
Field-Induced Quasiparticle Excitation in Ca(AlSi): Evidence for unconventional Superconductivity
The temperature () and magnetic field () dependence of the magnetic
penetration depth, , in Ca(AlSi) exhibits
significant deviation from that expected for conventional BCS superconductors.
In particular, it is inferred from a field dependence of () at 2.0 K that the quasiparticle excitation is strongly enhanced by the
Doppler shift. This suggests that the superconducting order parameter in
Ca(AlSi) is characterized by a small energy scale
K originating either from anisotropy or multi-gap
structure.Comment: 4 pages, 4 figures, submitted to J. Phys. Soc. Jp
Performance of the First LHC Pre-series Superconducting Dipoles
Within the LHC magnet program, a preseries production of final design, full-scale superconducting dipoles has presently started in industry and magnets are being tested at CERN. The main features of these magnets are: two-in-one structure, 56 mm aperture, six-block two layer coils wound from 15.1 mm wide graded NbTi cables, and all-polyimide insulation. This paper reviews the main test results of magnets tested to date in both supercritical and superfluid helium. The results of the quench training, conductor performance, magnet protection, sensitivity to ramp rate, and magnetic field quality are presented and discussed in terms of the design parameters and the aims of the LHC magnet programme
- …