28 research outputs found

    The field description model for the LHC quadrupole superconducting magnets

    Get PDF
    The LHC control system requires an accurate forecast of the magnetic field and the multipole field errors to reduce the burden on the beam-based feed-back. The Field Description for the LHC (FIDEL) is the core of this forecast system and is based on the identification and physical decomposition of the effects that contribute to the total field in the magnet apertures. The effects are quantified using the data obtained from series magnetic measurements at CERN and they are consequently modelled empirically or theoretically depending on the complexity of the physical phenomena. This paper presents a description of the methodology used to model the field of the LHC magnets particularly focusing on the results obtained for the LHC main quadrupoles (MQ) and insertion region wide aperture quadrupoles (MQY).peer-reviewe

    The dependence of the field decay on the powering history of the LHC superconducting dipole magnets

    Get PDF
    The decay of the allowed multipoles in the Large Hadron Collider (LHC) dipoles is expected to perturb the beam stability during the particle injection. The decay amplitude is largely affected by the powering history of the magnet and is particularly dependent on the pre-cycle flat-top current and duration as well as the pre-injection preparation duration. With possible prospects of having different genres of cycles during the LHC operation, the powering history effect must be taken into account in the Field Description Model for the LHC and must hence be corrected during machine operation. This paper presents the results of the modelling of this phenomenon.peer-reviewe

    Magnetic determination of the current center line for the superconducting ITER TF coils

    Get PDF
    The ITER tokamak includes 18 superconducting D-shaped toroidal field (TF) coils. Unavoidable shape deformations as well as assembly errors will lead to error fields in the final configuration, which can be modeled with the knowledge of the current center line (CCL). We are building a room temperature magnetic measurement system using low frequency ac excitation current through the TF coil and arrays of pick-up coils, fabricated with printed circuit board technology. Deviations from the expected shape of the CCL will be obtained by comparing the amplitude of magnetic flux measured at several locations around the perimeter of the TF coil, with values computed assuming the nominal current distribution. We present experimental results obtained with a cable placed in one turn groove of a full scale radial plate.peer-reviewe

    Parametric field modeling for the LHC main magnets in operating conditions

    Get PDF
    The first beam injections and current ramps in the LHC will require a prediction of the settings of the magnet current as well as the main correctors. For this reason we are developing a parametric model of the magnetic field generated by the LHC magnets that will provide the field dependence on current, ramp-rate, time, and history. The model of the field is fitted on magnetic field measurements performed during the acceptance tests of the magnets before their installation in the machine. In this paper we summarize the different steps necessary to select the relevant data and identify the parameters: the data extraction, the filtering and the validation of the measurements, and the fitting procedure that is used to obtain the parameters from the experimental results. The main result reported is a summary of the value of the parameters obtained with the above procedure, and describing the behavior of the magnetic field in the LHC main dipoles and quadrupoles.peer-reviewe

    Electrical and magnetic performance of the LHC short straight sections

    Get PDF
    The Short Straight Section (SSS) for the Large Hadron Collider arcs, containing in a common cryostat the lattice quadrupoles and correction magnets, have now entered series production. The foremost features of the lattice quadrupole magnets are a two-in-one structure containing two 56 mm aperture, two-layers coils wound from 15.1 mm wide NbTi cables, enclosed by the stainless steel collars and ferromagnetic yoke, and inserted into the inertia tube. Systematic cryogenic tests are performed at CERN in order to qualify these magnets with respect to their cryogenic and electrical integrity, the quench performance and the field quality in all operating conditions. This paper reports the main results obtained during tests and measurements in superfluid helium. The electrical characteristics, the insulation measurements and the quench performance are compared to the specifications and expected performances for these magnets. The field in the main quadrupole is measured using three independent systems: 10-m long twin rotating coils, an automatic scanner, and single stretched wire. A particular emphasis is given to the integrated transfer function which has a spread of around 12 units rms in the production and is a critical issue. The do-decapole harmonic component, which required trimming through a change in coil shims, is also discussed. Finally, the magnetic axis measurements at room temperature and at 1.9 K, providing the nominal vertical shift for installation are reported.peer-reviewe

    Focusing strength measurements of the main quadrupoles for the LHC

    Get PDF
    More than 1100 quadrupole magnets of different types are needed for the Large Hadron Collider (LHC) which is in the construction stage at CERN. The most challenging parameter to measure on these quadrupoles is the integrated gradient (Gdl). An absolute accuracy of 0.1% is needed to control the beta beating. In this paper we briefly describe the whole set of equipment used for Gdl measurements: Automated Scanner system, Single Stretched Wire system and Twin Coils system, concentrating mostly on their absolute accuracies. Most of the possible inherent effects that can introduce systematic errors are discussed along with their preventive methods. In the frame of this qualification some of the magnets were tested with two systems. The results of the intersystem cross-calibrations are presented. In addition, the qualification of the measurement system used at the magnet manufacturer's is based on results of more than 40 quadrupole assemblies tested in cold conditions at CERN and in warm conditions at the vendor site.peer-reviewe

    A demonstration experiment for the forecast of magnetic field and field errors in the Large Hadron Collider

    Get PDF
    In order to reduce the burden on the beam-based feedback, the Large Hadron Collider control system is equipped with the Field Description for the LHC (FiDeL) which provides a forecast of the magnetic field and the multipole field errors. FiDeL has recently been extensively tested at CERN to determine main field tracking, multipole forecasting and compensation accuracy. This paper describes the rationale behind the tests, the procedures employed to power the main magnets and their correctors, and finally, we present the results obtained. We also give an indication of the prediction accuracy that the system can deliver during the operation of the LHC and we discuss the implications that these will have on the machine performance.peer-reviewe

    Magnetic performance of the main superconducting magnets for the LHC

    Get PDF
    The field strength and homogeneity of all the LHC superconducting magnets were measured as a part of the production control and qualification process that has taken place during the past four years. In addition to field measurements at room temperature performed on the integral of the production, a significant part of the magnets has been subjected to extensive magnetic measurements at cold. The measurements at cryogenic temperatures, generally performed up to excitation currents of 12 kA corresponding to the ultimate LHC energy of 7.6 TeV, were mainly based on static and dynamic field integral and harmonic measurements. This allowed us to study in detail the DC effects from persistent current magnetization and long-term decay during constant current excitation. These effects are all expected to be of relevance for the field setting and error compensation in the LHC. This paper reports the main results obtained during these tests executed at operating conditions. The integrated field quality is discussed in terms of distribution (average and spread) of the field strength and low-order harmonics as obtained for all the main ring magnet families (dipoles, main and matching quadrupoles). The dependence of field quality on coil geometry, magnet and cable manufacturer is analyzed. A projection of the field quality expected for the critical components in the machine is presented.peer-reviewe

    Performance of LHC Main Dipoles for Beam Operation

    Get PDF
    At present about 90% of the main dipoles for the LHC have been manufactured and one of the three cold mass assemblers has already completed the production. 85% of the 1232 dipoles needed for the tunnel have been tested and accepted. In this paper we mainly deal with the performance results: the quench behaviour, the magnetic field quality, the electrical integrity quality and the geometry features will be summarized

    Axis measurements, field quality and quench performance of the first LHC short straight sections

    Get PDF
    The series testing at 1.9 K of the 360 Short Straight Sections (SSS) for the Large Hadron Collider have started at CERN in September 2003. The SSS contain the lattice quadrupoles and correction magnets in a common cryostat. The lattice quadrupoles feature two collared coils with 56 mm bore assembled in a common yoke. The coils are wound in two-layers from 15.1 mm wide NbTi cable, insulated with polyimide tape. The paper reviews the main test results performed in superfluid helium. The magnetic field and magnetic center position of the quadrupoles and associated correctors were measured with two independent systems, namely an automated scanner and a single stretched wire technique. The quench training, the field quality and the magnetic alignment measurements are presented and discussed in terms of the specifications and expected performances of these magnets in the LHC. We discuss in detail the field quality in terms of multipole errors measured at injection and nominal field and decomposed into geometric and persistent current magnetization errors. Warm/cold correlation for the geometric multipoles and the magnetic axis is also presented.peer-reviewe
    corecore