77 research outputs found

    Intelligent Control of a Sensor-Actuator System via Kernelized Least-Squares Policy Iteration

    Get PDF
    In this paper a new framework, called Compressive Kernelized Reinforcement Learning (CKRL), for computing near-optimal policies in sequential decision making with uncertainty is proposed via incorporating the non-adaptive data-independent Random Projections and nonparametric Kernelized Least-squares Policy Iteration (KLSPI). Random Projections are a fast, non-adaptive dimensionality reduction framework in which high-dimensionality data is projected onto a random lower-dimension subspace via spherically random rotation and coordination sampling. KLSPI introduce kernel trick into the LSPI framework for Reinforcement Learning, often achieving faster convergence and providing automatic feature selection via various kernel sparsification approaches. In this approach, policies are computed in a low-dimensional subspace generated by projecting the high-dimensional features onto a set of random basis. We first show how Random Projections constitute an efficient sparsification technique and how our method often converges faster than regular LSPI, while at lower computational costs. Theoretical foundation underlying this approach is a fast approximation of Singular Value Decomposition (SVD). Finally, simulation results are exhibited on benchmark MDP domains, which confirm gains both in computation time and in performance in large feature spaces

    Structure modification of an antibiotic: by engineering the fusaricidin bio-synthetase A in Paenibacillus polymyxa

    Get PDF
    Fusaricidin, a lipopeptide antibiotic, is specifically produced by Paenibacillus polymyxa strains, which could strongly inhibit Fusarium species fungi. Fusaricidin bio-synthetase A (FusA) is composed of six modules and is essential for synthesizing the peptide moiety of fusaricidin. In this study, we confirmed the FusA of Paenibacillus polymyxa strain WLY78 involved in producing Fusaricidin LI-F07a. We constructed six engineered strains by deletion of each module within FusA from the genome of strain WLY78. One of the engineered strains is able to produce a novel compound that exhibits better antifungal activity than that of fusaricidin LI-F07a. This new compound, known as fusaricidin [Ξ”Ala6] LI-F07a, has a molecular weight of 858. Our findings reveal that it exhibits a remarkable 1-fold increase in antifungal activity compared to previous fusaricidin, and the fermentation yield reaches ~55 mg/L. This research holds promising implications for plant protection against infections caused by Fusarium and Botrytis pathogen infection

    Suppression of hesA mutation on nitrogenase activity in Paenibacillus polymyxa WLY78 with the addition of high levels of molybdate or cystine

    Get PDF
    The diazotrophic Paenibacillus polymyxa WLY78 possesses a minimal nitrogen fixation gene cluster consisting of nine genes (nifB nifH nifD nifK nifE nifN nifX hesA and nifV). Notably, the hesA gene contained within the nif gene cluster is also found within nif gene clusters among diazotrophic cyanobacteria and Frankia. The predicted product HesA is a member of the ThiF-MoeB-HesA family containing an N-terminal nucleotide binding domain and a C-terminal MoeZ/MoeB-like domain. However, the function of hesA gene in nitrogen fixation is unknown. In this study, we demonstrate that the hesA mutation of P. polymyxa WLY78 leads to nearly complete loss of nitrogenase activity. The effect of the mutation can be partially suppressed by the addition of high levels of molybdate or cystine. However, the nitrogenase activity of the hesA mutant could not be restored by Klebsiella oxytoca nifQ or Escherichia coli moeB completely. In addition, the hesA mutation does not affect nitrate reductase activity of P. polymyxa WLY78. Our results demonstrate hesA is a novel gene specially required for nitrogen fixation and its role is related to introduction of S and Mo into the FeMo-co of nitrogenase

    Amelioration of drought effects in wheat and cucumber by the combined application of super absorbent polymer and potential biofertilizer

    Get PDF
    Biofertilizer is a good substitute for chemical fertilizer in sustainable agriculture, but its effects are often hindered by drought stress. Super absorbent polymer (SAP), showing good capacity of water absorption and retention, can increase soil moisture. However, limited information is available about the efficiency of biofertilizer amended with SAP. This study was conducted to investigate the effects of synergistic application of SAP and biofertilizers (Paenibacillus beijingensis BJ-18 and Bacillus sp. L-56) on plant growth, including wheat and cucumber. Potted soil was treated with different fertilizer combinations (SAP, BJ-18 biofertilizer, L-56 biofertilizer, BJ-18 + SAP, L-56 + SAP), and pot experiment was carried out to explore its effects on viability of inoculants, seed germination rate, plant physiological and biochemical parameters, and expression pattern of stress-related genes under drought condition. At day 29 after sowing, the highest viability of strain P. beijingensis BJ-18 (264 copies ngβˆ’1 gDNA) was observed in BJ-18 + SAP treatment group of wheat rhizosphere soil, while that of strain Bacillus sp. L-56 (331 copies ngβˆ’1 gDNA) was observed in the L-56 + SAP treatment group of cucumber rhizosphere soil. In addition, both biofertilizers amended with SAP could promote germination rate of seeds (wheat and cucumber), plant growth, soil fertility (urease, sucrose, and dehydrogenase activities). Quantitative real-time PCR analysis showed that biofertilizer + SAP significantly down-regulated the expression levels of genes involved in ROS scavenging (TaCAT, CsCAT, TaAPX, and CsAPX2), ethylene biosynthesis (TaACO2, CsACO1, and CsACS1), stress response (TaDHN3, TaLEA, and CsLEA11), salicylic acid (TaPR1-1a and CsPR1-1a), and transcription activation (TaNAC2D and CsNAC35) in plants under drought stress. These results suggest that SAP addition in biofertilizer is a good tactic for enhancing the efficiency of biofertilizer, which is beneficial for plants in response to drought stress. To the best of our knowledge, this is the first report about the effect of synergistic use of biofertilizer and SAP on plant growth under drought stress

    Diazotrophic Paenibacillus beijingensis BJ-18 Provides Nitrogen for Plant and Promotes Plant Growth, Nitrogen Uptake and Metabolism

    Get PDF
    Diazotrophic bacteria can reduce N2 into plant-available ammonium (NH4+), promoting plant growth and reducing nitrogen (N) fertilizer requirements. However, there are few systematic studies on the effects of diazotrophic bacteria on biological N2 fixation (BNF) contribution rate and host plant N uptake and metabolism. In this study, the interactions of the diazotrophic Paenibacillus beijingensis BJ-18 with wheat, maize, and cucumber were investigated when it was inoculated to these plant seedlings grown in both low N and high N soils, with un-inoculated plants as controls. This study showed that GFP-tagged P. beijingensis BJ-18 colonized inside and outside seedlings, forming rhizospheric and endophytic colonies in roots, stems, and leaves. The numbers of this bacterium in the inoculated plants depended on soil N levels. Under low N, inoculation significantly increased shoot dry weight (wheat 86.1%, maize 46.6%, and cucumber 103.6%) and root dry weight (wheat 46.0%, maize 47.5%, and cucumber 20.3%). The 15N-isotope-enrichment experiment indicated that plant seedlings derived 12.9–36.4% N from BNF. The transcript levels of nifH in the inoculated plants were 0.75–1.61 folds higher in low N soil than those in high N soil. Inoculation enhanced NH4+ and nitrate (NO3-) uptake from soil especially under low N. The total N in the inoculated plants were increased by 49.1–92.3% under low N and by 13–15.5% under high N. Inoculation enhanced activities of glutamine synthetase (GS) and nitrate reductase (NR) in plants, especially under low N. The expression levels of N uptake and N metabolism genes: AMT (ammonium transporter), NRT (nitrate transporter), NiR (nitrite reductase), NR, GS and GOGAT (glutamate synthase) in the inoculated plants grown under low N were up-regulated 1.5–91.9 folds, but they were not obviously changed under high N. Taken together, P. beijingensis BJ-18 was an effective, endophytic and diazotrophic bacterium. This bacterium contributed to plants with fixed N2, promoted plant growth and N uptake, and enhanced gene expression and enzyme activities involved in N uptake and assimilation in plants. However, these positive effects on plants were regulated by soil N status. This study might provide insight into the interactions of plants with beneficial associative and endophytic diazotrophic bacteria

    Colonization of Wheat, Maize and Cucumber by Paenibacillus polymyxa WLY78.

    No full text
    Paenibacillus polymyxa WLY78 is a nitrogen fixer and it can be potentially applied to biofertilizer in agriculture. In this study, P. polymyxa WLY78 is labelled with gfp gene. The GFP-labelled P. polymyxa WLY78 is used to inoculate wheat, maize and cucumber seedlings grown in the gnotobiotic system and in soil, respectively. Observation by confocal laser scanning microscope reveals that the GFP-labeled bacterial cells are mainly located on the root surface and epidermis of wheat, and only a few cells are present within cortical cells. In maize and cucumber seedlings, bacterial cells were colonized in epidermal and cortical cells, intercellular spaces and vascular system of root, stem and leaf tissue interiors besides on root surfaces. Higher densities of the bacterial cells in roots, stems and leaves indicated that P. polymyxa WLY78 cells could migrate from roots to stems and leaves of maize and cucumber. This study will provide insight into interaction between P. polymyxa WLY78 and host cells

    Data_Sheet_1_Structure modification of an antibiotic: by engineering the fusaricidin bio-synthetase A in Paenibacillus polymyxa.docx

    No full text
    Fusaricidin, a lipopeptide antibiotic, is specifically produced by Paenibacillus polymyxa strains, which could strongly inhibit Fusarium species fungi. Fusaricidin bio-synthetase A (FusA) is composed of six modules and is essential for synthesizing the peptide moiety of fusaricidin. In this study, we confirmed the FusA of Paenibacillus polymyxa strain WLY78 involved in producing Fusaricidin LI-F07a. We constructed six engineered strains by deletion of each module within FusA from the genome of strain WLY78. One of the engineered strains is able to produce a novel compound that exhibits better antifungal activity than that of fusaricidin LI-F07a. This new compound, known as fusaricidin [Ξ”Ala6] LI-F07a, has a molecular weight of 858. Our findings reveal that it exhibits a remarkable 1-fold increase in antifungal activity compared to previous fusaricidin, and the fermentation yield reaches ~55 mg/L. This research holds promising implications for plant protection against infections caused by Fusarium and Botrytis pathogen infection.</p

    Diazotroph <i>Paenibacillus triticisoli</i> BJ-18 Drives the Variation in Bacterial, Diazotrophic and Fungal Communities in the Rhizosphere and Root/Shoot Endosphere of Maize

    No full text
    Application of diazotrophs (N2-fixing microorganisms) can decrease the overuse of nitrogen (N) fertilizer. Until now, there are few studies on the effects of diazotroph application on microbial communities of major crops. In this study, the diazotrophic and endospore-forming Paenibacillus triticisoli BJ-18 was inoculated into maize soils containing different N levels. The effects of inoculation on the composition and abundance of the bacterial, diazotrophic and fungal communities in the rhizosphere and root/shoot endosphere of maize were evaluated by sequencing the 16S rRNA, nifH gene and ITS (Inter Transcribed Spacer) region. P. triticisoli BJ-18 survived and propagated in all the compartments of the maize rhizosphere, root and shoot. The abundances and diversities of the bacterial and diazotrophic communities in the rhizosphere were significantly higher than in both root and shoot endospheres. Each compartment of the rhizosphere, root and shoot had its specific bacterial and diazotrophic communities. Our results showed that inoculation reshaped the structures of the bacterial, diazotrophic and fungal communities in the maize rhizosphere and endosphere. Inoculation reduced the interactions of the bacteria and diazotrophs in the rhizosphere and endosphere, while it increased the fungal interactions. After inoculation, the abundances of Pseudomonas, Bacillus and Paenibacillus in all three compartments, Klebsiella in the rhizosphere and Paenibacillus in the root and shoot were significantly increased, while the abundances of Fusarium and Giberella were greatly reduced. Paenibacillus was significantly correlated with plant dry weight, nitrogenase, N2-fixing rate, P solubilization and other properties of the soil and plant
    • …
    corecore