10 research outputs found

    The directed-loop algorithm

    Full text link
    The directed-loop scheme is a framework for generalized loop-type updates in quantum Monte Carlo, applicable both to world-line and stochastic series expansion methods. Here, the directed-loop equations, the solution of which gives the probabilities of the various loop-building steps, are discussed in the context of the anisotropic S=1/2S=1/2 Heisenberg model in a uniform magnetic field. This example shows how the directed-loop concept emerges as a natural generalization of the conventional loop algorithm, where the loops are selfavoiding, to cases where selfintersection must be allowed in order to satisfy detailed balance.Comment: 10 pages, for the proceedings of "The Monte Carlo Method in the Physical Sciences: Celebrating the 50th Anniversary of the Metropolis Algorithm", Los Alamos, June 9-11, 200

    Quantum Monte Carlo with Directed Loops

    Full text link
    We introduce the concept of directed loops in stochastic series expansion and path integral quantum Monte Carlo methods. Using the detailed balance rules for directed loops, we show that it is possible to smoothly connect generally applicable simulation schemes (in which it is necessary to include back-tracking processes in the loop construction) to more restricted loop algorithms that can be constructed only for a limited range of Hamiltonians (where back-tracking can be avoided). The "algorithmic discontinuities" between general and special points (or regions) in parameter space can hence be eliminated. As a specific example, we consider the anisotropic S=1/2 Heisenberg antiferromagnet in an external magnetic field. We show that directed loop simulations are very efficient for the full range of magnetic fields (zero to the saturation point) and anisotropies. In particular for weak fields and anisotropies, the autocorrelations are significantly reduced relative to those of previous approaches. The back-tracking probability vanishes continuously as the isotropic Heisenberg point is approached. For the XY-model, we show that back-tracking can be avoided for all fields extending up to the saturation field. The method is hence particularly efficient in this case. We use directed loop simulations to study the magnetization process in the 2D Heisenberg model at very low temperatures. For LxL lattices with L up to 64, we utilize the step-structure in the magnetization curve to extract gaps between different spin sectors. Finite-size scaling of the gaps gives an accurate estimate of the transverse susceptibility in the thermodynamic limit: chi_perp = 0.0659 +- 0.0002.Comment: v2: Revised and expanded discussion of detailed balance, error in algorithmic phase diagram corrected, to appear in Phys. Rev.

    Directed Loop Updates for Quantum Lattice Models

    Full text link
    This article outlines how the quantum Monte Carlo directed loop update recently introduced can be applied to a wide class of quantum lattice models. Several models are considered: Spin-S XXZ models with longitudinal and transverse magnetic fields, boson models with two-body interactions, and 1D spinful fermion models. Expressions are given for the parameter regimes were very efficient "no-bounce" quantum Monte Carlo algorithms can be found.Comment: 18 pages, 19 figure

    Pressure control of nonferroelastic ferroelectric domains in ErMnO3

    Get PDF
    Mechanical pressure controls the structural, electric, and magnetic order in solid-state systems, allowing tailoring of their physical properties. A well-established example is ferroelastic ferroelectrics, where the coupling between pressure and the primary symmetry-breaking order parameter enables hysteretic switching of the strain state and ferroelectric domain engineering. Here, we study the pressure-driven response in a nonferroelastic ferroelectric, ErMnO3, where the classical stress–strain coupling is absent and the domain formation is governed by creation–annihilation processes of topological defects. By annealing ErMnO3 polycrystals under variable pressures in the MPa regime, we transform nonferroelastic vortex-like domains into stripe-like domains. The width of the stripe-like domains is determined by the applied pressure as we confirm by three-dimensional phase field simulations, showing that pressure leads to oriented layer-like periodic domains. Our work demonstrates the possibility to utilize mechanical pressure for domain engineering in nonferroelastic ferroelectrics, providing a lever to control their dielectric and piezoelectric responses

    Pressure Control of Nonferroelastic Ferroelectric Domains in ErMnO₃

    No full text
    Mechanical pressure controls the structural, electric, and magnetic order in solid-state systems, allowing tailoring of their physical properties. A well-established example is ferroelastic ferroelectrics, where the coupling between pressure and the primary symmetry-breaking order parameter enables hysteretic switching of the strain state and ferroelectric domain engineering. Here, we study the pressure-driven response in a nonferroelastic ferroelectric, ErMnO₃, where the classical stress–strain coupling is absent and the domain formation is governed by creation–annihilation processes of topological defects. By annealing ErMnO₃ polycrystals under variable pressures in the MPa regime, we transform nonferroelastic vortex-like domains into stripe-like domains. The width of the stripe-like domains is determined by the applied pressure as we confirm by three-dimensional phase field simulations, showing that pressure leads to oriented layer-like periodic domains. Our work demonstrates the possibility to utilize mechanical pressure for domain engineering in nonferroelastic ferroelectrics, providing a lever to control their dielectric and piezoelectric responses.ISSN:1530-6984ISSN:1530-699

    Pressure Control of Nonferroelastic Ferroelectric Domains in ErMnO<sub>3</sub>

    No full text
    Mechanical pressure controls the structural, electric, and magnetic order in solid-state systems, allowing tailoring of their physical properties. A well-established example is ferroelastic ferroelectrics, where the coupling between pressure and the primary symmetry-breaking order parameter enables hysteretic switching of the strain state and ferroelectric domain engineering. Here, we study the pressure-driven response in a nonferroelastic ferroelectric, ErMnO3, where the classical stress–strain coupling is absent and the domain formation is governed by creation–annihilation processes of topological defects. By annealing ErMnO3 polycrystals under variable pressures in the MPa regime, we transform nonferroelastic vortex-like domains into stripe-like domains. The width of the stripe-like domains is determined by the applied pressure as we confirm by three-dimensional phase field simulations, showing that pressure leads to oriented layer-like periodic domains. Our work demonstrates the possibility to utilize mechanical pressure for domain engineering in nonferroelastic ferroelectrics, providing a lever to control their dielectric and piezoelectric responses

    Select Bibliography of Contributions to Economic and Social History Appearing in Scandinavian Books, Periodicals and Year-books, 1986

    No full text
    corecore