2 research outputs found

    Increasing crop rotational diversity can enhance cereal yields

    Get PDF
    9 Pág.Diversifying agriculture by rotating a greater number of crop species in sequence is a promising practice to reduce negative impacts of crop production on the environment and maintain yields. However, it is unclear to what extent cereal yields change with crop rotation diversity and external nitrogen fertilization level over time, and which functional groups of crops provide the most yield benefit. Here, using grain yield data of small grain cereals and maize from 32 long-term (10–63 years) experiments across Europe and North America, we show that crop rotational diversity, measured as crop species diversity and functional richness, enhanced grain yields. This yield benefit increased over time. Only the yields of winter-sown small grain cereals showed a decline at the highest level of species diversity. Diversification was beneficial to all cereals with a low external nitrogen input, particularly maize, enabling a lower dependence on nitrogen fertilisers and ultimately reducing greenhouse gas emissions and nitrogen pollution. The results suggest that increasing crop functional richness rather than species diversity can be a strategy for supporting grain yields across many environments.G.V., R.B. and S.H. acknowledge FORMAS grants 2018-02872 and 2018-02321. TMB acknowledges USDA AFRI grant 2017-67013-26254. LTEs managed by SRUC were supported by the Scottish Government RESAS Strategic Research Programme under project D3-, Healthy Soils for a Green Recovery. Swedish LTEs were funded by the Swedish University of Agricultural Sciences (SLU). We thank the Lawes Agricultural Trust and Rothamsted Research for data from the e-RA database. The Rothamsted Long-term Experiments National Capability (LTE-NC) was supported by the UK BBSRC (Biotechnology and Biological Sciences Research Council, BBS/E/C/000J0300) and the Lawes Agricultural Trust. The Woodslee site was supported by the Agro-Ecosystem Resilience Program (Agriculture & Agri-Food Canada) and field management provided by field crews over 6 decades is appreciated. La Canaleja LTE (Spain) was supported by RTA2017-00006-C03-01 project (Ministry of Science and Innovation. El Encín LTEs were supported by Spanish Ministry of Economy and Competitiveness funds (projects AGL2002-04186-C03-01.03, AGL2007-65698-C03-01.03, AGL2012-39929-C03-01 of which L. Navarrete was the P.I). R.A., A.G.D. and E.H.P. are also grateful to all members of the Weed Science Group from El Encín Experimental Station for their technical assistance in managing the experiments. The Brody/Poznan University of Life Sciences long-term experiments were funded by the Polish Ministry of Education and Science. We acknowledge the E-Obs dataset from the EU-FP6 project UERRA (http://www.uerra.eu) and the Copernicus Climate Change Service, and the data providers in the ECA&D project (https://www.ecad.eu/).Peer reviewe

    Crop rotational diversity can mitigate climate-induced grain yield losses

    Get PDF
    Diversified crop rotations have been suggested to reduce grain yield losses from the adverse climatic conditions increasingly common under climate change. Nevertheless, the potential for climate change adaptation of different crop rotational diversity (CRD) remains undetermined. We quantified how climatic conditions affect small grain and maize yields under different CRDs in 32 long-term (10-63 years) field experiments across Europe and North America. Species-diverse and functionally rich rotations more than compensated yield losses from anomalous warm conditions, long and warm dry spells, as well as from anomalous wet (for small grains) or dry (for maize) conditions. Adding a single functional group or crop species to monocultures counteracted yield losses from substantial changes in climatic conditions. The benefits of a further increase in CRD are comparable with those of improved climatic conditions. For instance, the maize yield benefits of adding three crop species to monocultures under detrimental climatic conditions exceeded the average yield of monocultures by up to 553 kg/ha under non-detrimental climatic conditions. Increased crop functional richness improved yields under high temperature, irrespective of precipitation. Conversely, yield benefits peaked at between two and four crop species in the rotation, depending on climatic conditions and crop, and declined at higher species diversity. Thus, crop species diversity could be adjusted to maximize yield benefits. Diversifying rotations with functionally distinct crops is an adaptation of cropping systems to global warming and changes in precipitation.</p
    corecore