280 research outputs found

    Vitamin D. a dynamic molecule. how relevant might the dynamism for a vitamin be

    Get PDF
    Cholecalciferol, the precursor of Vitamin D3, is a very old, highly conserved, molecule. Its presence is evident in non-mineralized 750 million-year-old living species, such as plankton. The more active metabolites, a receptor and a D binding protein, appear later, along with the increasing complexity of animal species living in the sea. In the sea, however, the biological function of vitamin D is unlikely to be linked with mineral metabolism, and we can hypothesize a relationship with an immune response. It is in terrestrial animals exhibiting cellular bone that the complexity of vitamin D increases. At this stage of evolution, we see the appearance of bone cells that are capable of producing hormones that regulate and are regulated by vitamin D. This interaction starts a sophisticated metabolic system that modulates both mineral and energy metabolism for the requirements of the musculoskeletal system. Among the so-called pleiotropic effects of vitamin D, those resulting from the inhibitory effect on the renin-angiotensin system are of particular interest for nephrologists. Intriguingly, however, more than for anti-hypertensive effects, this interaction could be relevant for anti-inflammatory actions, possibly representative of a residual ancestral role of vitamin D. In addition, this evolutionary dynamism of the vitamin D system should not be separated from the chemical dynamism that characterizes the ligand molecule and its specific receptor. Both are capable of significant tridimensional modifications that contribute to an increase in the variability and the partial predictability of their final biological effect. A dynamic overview of this system that takes into account its evolutionary and adaptive aspects may be helpful to understand its biological complexity and to envisage why using vitamin D metabolites for therapeutic purposes is still a matter of debate

    Intervista a Sandro Mazzaferro

    Get PDF
    Abstract non disponibil

    Positioning novel biologicals in CKD-mineral and bone disorders

    Get PDF
    Renal osteodystrophy (ROD), the histologic bone lesions of chronic kidney disease (CKD), is now included in a wider syndrome with laboratory abnormalities of mineral metabolism and extra-skeletal calcifications or CKD-mineral and bone disorders (CKD-MBD), to highlight the increased burden of mortality. Aging people, frequently identified as early CKD, could suffer from either the classical age-related osteoporosis (OP) or ROD. Distinguishing between these two bone diseases may not be easy without bone biopsy. In any case, besides classical therapies for ROD, nephrologists are now challenged by the possibility of using new drugs developed for OP. Importantly, while therapies for ROD mostly aim at controlling parathyroid secretion with bone effects regarded as indirect, new drugs for OP directly modulate bone cells activity. Thus, their action could be useful in specific types of ROD. Parathyroid hormone therapy, which is anabolic in OP, could be useful in renal patients with low turnover bone disease. Denosumab, the monoclonal antibody against receptor activator of NF-ÎșB ligand (RANK-L) that inhibits osteoclast activity and proliferation, could be beneficial in cases with high turnover bone. Use of romosozumab, the monoclonal antibody against sclerostin, which both stimulates osteoblasts and inhibits osteoclasts, could allow both anabolic and anti-resorptive effects. However, we should not forget the systemic role now attributed to CKD-MBD. In fact, therapies targeting bone cells activity could also result in unpredicted extra-bone effects and affect cardiovascular outcomes. In conclusion, the new biologicals established for OP could be useful in renal patients with either OP or ROD. In addition, their potential non-bone effects warrant investigation

    Oxygen Extraction Ratio (OER) as a Measurement of Hemodialysis (HD) Induced Tissue Hypoxia: A Pilot Study

    Get PDF
    HD tissue hypoxia associates with organ dysfunctions. OER, the ratio between SaO2and central-venous-oxygen-saturation, could estimate oxygen requirements during sessions, but no data are available. We evaluated OER behavior in 20 HD patients with permanent central venous catheter (CVC) as vascular access. Pre-HD OER (33.6 ± 1.4%; M ± SE) was higher than normal (range 20-30%). HD sessions increased OER to 39.2 ± 1.5% (M ± SE; p 40%. In HD patients with CVC as vascular access, OER is a cheap, easily measurable and repeatable parameter useful to assess intradialytic hypoxia, and a potential biomarker of HD related stress and morbidity, helpful to recognize patients at increased risk of mortality

    A new technique for measuring fistula flow using venous blood gas oxygen saturation in patients with a central venous catheter

    Get PDF
    Background. Doppler ultrasound (DU) monitoring early after arteriovenous fistula (AVF) creation allows the identification of low blood flow (Qa) requiring prompt revision, but it is costly (needs skilled operators and technical instruments) and is not available in all dialysis units. Therefore alternative first-line methods to measure Qa would be welcomed.We reasoned that once an AVF is created, an increment in central venous oxygen saturation (ScvO2) is predictable and proportional to Qa. Methods. Accordingly, in patients receiving dialysis through a central venous catheter (CVC) in whom an AVF was created, we measured, by means of blood gas analysis, the ScvO2 increment before and after manual compression of the arteriovenous shunt and verified its correlation with DU-measured Qa. Results. We sampled blood gas in 18 patients with CVC and AVF before and after 30 s manual compression of the AVF. ScvO2 averaged 70.563% before and 65.263% after AVF closure, with an average drop of 5.163% (range 1–12). AVF Qa, which was measured within 24h by means of DU, averaged 6356349 mL/min (range 50–1300) and was strictly and positively correlated with DScvO2 (r ÂŒ 0.954, P<0.0001). Conclusions. Therefore we suggest that in patients with CVC and a newly created AVF, it is possible to monitor AVF Qa without DU by simply measuring blood gas and DScvO2. This technique is simple, cheap, repeatable, non-invasive and operator independent and represents a new useful screening test to detect delayed AVF access maturation deserving prompt DU measurement and surgical revision. It helps to quickly identify patients in urgent need of DU verification and possible surgical revision. Regrettably, it is applicable only in patients with CVC

    Vitamin D, a modulator of musculoskeletal health in chronic kidney disease

    Get PDF
    The spectrum of activity of vitamin D goes beyond calcium and bone homeostasis, and growing evidence suggests that vitamin D contributes to maintain musculoskeletal health in healthy subjects as well as in patients with chronic kidney disease (CKD), who display the combination of bone metabolism disorder, muscle wasting, and weakness. Here, we review how vitamin D represents a pathway in which bone and muscle may interact. In vitro studies have confirmed that the vitamin D receptor is present on muscle, describing the mechanisms whereby vitamin D directly affects skeletal muscle. These include genomic and non‐genomic (rapid) effects, regulating cellular differentiation and proliferation. Observational studies have shown that circulating 25‐hydroxyvitamin D levels correlate with the clinical symptoms and muscle morphological changes observed in CKD patients. Vitamin D deficiency has been linked to low bone formation rate and bone mineral density, with an increased risk of skeletal fractures. The impact of low vitamin D status on skeletal muscle may also affect muscle metabolic pathways, including its sensitivity to insulin. Although some interventional studies have shown that vitamin D may improve physical performance and protect against the development of histological and radiological signs of hyperparathyroidism, evidence is still insufficient to draw definitive conclusions

    Interactions of sclerostin with FGF23, soluble klotho and vitamin D in renal transplantation

    Get PDF
    Relationships of Sclerostin, a bone anti-anabolic protein, with biomarkers of mineral bone disorders in chronic kidney disease are still unsettled, in particular in kidney transplant (KTR). In 80 KTR patients (31F/49M, 54.7±10.3 years) we studied the relationships of serum Sclerostin with eGFR, Calcium, Phosphate, Alkaline Phosphatase (AP), intact Parathyroid hormone (iPTH), soluble alpha-Klotho (sKlotho), intact Fibroblast Growth Factor 23 (iFGF23), 25-hydroxyvitamin D(25D) and 1,25-dihydroxyvitamin D (1,25D). Thirty healthy subjects (35.0±12.4 years, eGFR 109.1±14.1 ml /min/1,73m2) served as control for Sclerostin, iFGF23 and sKlotho. With a median eGFR of 46.3 mL/min/1.73m2 (IQR, 36.2-58.3) our KTR had median Sclerostin levels of 23.7 pmol/L (IQR: 20.8-32.8), not different from controls (26.6 pmol/L, IQR: 22.0-32.2; p = n.s). Sclerostin correlated negatively with AP (r = -.251; p = 0.023) and positively with iFGF23 (r = .227; p = 0.017) and 25D (r = .214; p = 0.025). Age-adjusted multiple regression analysis identified AP and 1,25D as negative and 25D and sKlotho as positive best predictors of Sclerostin. No correlation was evident with eGFR. The negative correlation with AP confirms the direct anti-anabolic role of Sclerostin. The associations either negative or positive with iFGF23, sKlotho, and vitamin D metabolites suggest also a modulatory role in mineral homeostasis. In particular, the associations with iFGF23 (positive) and 1,25D (negative) underline the relevant inhibitory action of Sclerostin on vitamin D activation. In conclusion, Sclerostin levels in KTR are normal and influenced more by bone turnover than by eGFR. Its involvement with other hormones of mineral homeostasis (FGF23/Klotho and Vitamin D) is part of the sophisticated cross-talk between bone and the kidney

    Switching to lanthanum carbonate monotherapy provides effective phosphate control with a low tablet burden

    Get PDF
    Background. Despite recognized risks associated with hyperphosphataemia in patients with chronic kidney disease (CKD) Stage 5 on dialysis, the achievement of target levels of serum phosphate is poor. It is likely that this is partly due to poor adherence by patients to their phosphate-binder treatment regimens, which often comprise large daily tablet burdens

    Alkaline phosphatases in the complex chronic kidney disease-mineral and bone disorders

    Get PDF
    Alkaline phosphatases (APs) remove the phosphate (dephosphorylation) needed in multiple metabolic processes (from many molecules such as proteins, nucleotides, or pyrophosphate). Therefore, APs are important for bone mineralization but paradoxically they can also be deleterious for other processes, such as vascular calcification and the increasingly known cross-talk between bone and vessels. A proper balance between beneficial and harmful activities is further complicated in the context of chronic kidney disease (CKD). In this narrative review, we will briefly update the complexity of the enzyme, including its different isoforms such as the bone-specific alkaline phosphatase or the most recently discovered B1x. We will also analyze the correlations and potential discrepancies with parathyroid hormone and bone turnover and, most importantly, the valuable recent associations of AP's with cardiovascular disease and/or vascular calcification, and survival. Finally, a basic knowledge of the synthetic and degradation pathways of APs promises to open new therapeutic strategies for the treatment of the CKD-Mineral and Bone Disorder (CKD-MBD) in the near future, as well as for other processes such as sepsis, acute kidney injury, inflammation, endothelial dysfunction, metabolic syndrome or, in diabetes, cardiovascular complications. However, no studies have been done using APs as a primary therapeutic target for clinical outcomes, and therefore, AP's levels cannot yet be used alone as an isolated primary target in the treatment of CKD-MBD. Nonetheless, its diagnostic and prognostic potential should be underlined

    Osteodistrofia renale vs Osteoporosi

    Get PDF
    Abstract non disponibil
    • 

    corecore