153 research outputs found
0341: AMPK exerts an insulin-sensitizing effect on cardiac glucose uptake by multiple molecular mechanisms including cytoskeleton reorganization
BackgroundInsulin-resistant cardiomyocytes are characterized by a decreased ability of insulin to stimulate glucose uptake. We have previously shown that the activation of AMPK by metformin or phenformin restores insulin-sensitivity in insulin-resistant cardiomyocytes. The aim of our present work is to understand by which molecular mechanisms AMPK exerts its insulin sensitizing effect. In this study we focused on the mTOR/p70S6K pathway and on cytoskeleton reorganization. mTOR/p70S6K, which is known to be inhibited by AMPK, is able to reduce insulin signaling via a negative feedback loop involving serine phosphorylation of IRS-1. On the other hand, cytoskeleton reorganization, which is a known target of AMPK, is responsible for the translocation of the glucose transporter GLUT4 to the plasma membrane.MethodsAdult rat cardiomyocytes were primary cultured and treated with different agents including insulin, AMPK activator (phenformin), mTOR inhibitor rapamycin and/or actin cytoskeleton inhibitor latrunculin B. Glucose uptake was assessed by detritiation of 2-3H-glucose.ResultsFirst, we tested if rapamycin was able to mimic AMPK activators. Similarly to phenformin, rapamycin increased the insulin-dependent phosphorylation of Akt involved in the regulation of glucose uptake. Despite the ability of rapamycin to induce this Akt over-phosphorylation, rapamycin was not able to restore the insulin-dependent stimulation of glucose uptake like phenformin did. On the other hand, latrunculin B abolished the insulin-sensitizing action of phenformin on glucose uptake, in insulin-sensitive as well as in insulinresistant cells.Conclusionsactin cytoskeleton reorganization but not mTOR/p70S6K, is involved in the insulin-sensitizing effect of AMPK on cardiac glucose uptake. The role played by Small G proteins, known to be involved in the regulation of actin cytoskeleton is under investigation
Role of AMP-activated protein kinase in regulating hypoxic survival and proliferation of mesenchymal stem cells
Aims Mesenchymal stem cells (MSCs) are widely used for cell therapy, particularly for the treatment of ischaemic heart disease. Mechanisms underlying control of their metabolism and proliferation capacity, critical elements for their survival and differentiation, have not been fully characterized. AMP-activated protein kinase (AMPK) is a key regulator known to metabolically protect cardiomyocytes against ischaemic injuries and, more generally, to inhibit cell proliferation. We hypothesized that AMPK plays a role in control of MSC metabolism and proliferation. Methods and results MSCs isolated from murine bone marrow exclusively expressed the AMPKα1 catalytic subunit. In contrast to cardiomyocytes, a chronic exposure of MSCs to hypoxia failed to induce cell death despite the absence of AMPK activation. This hypoxic tolerance was the consequence of a preference of MSC towards glycolytic metabolism independently of oxygen availability and AMPK signalling. On the other hand, A-769662, a well-characterized AMPK activator, was able to induce a robust and sustained AMPK activation. We showed that A-769662-induced AMPK activation inhibited MSC proliferation. Proliferation was not arrested in MSCs derived from AMPKα1-knockout mice, providing genetic evidence that AMPK is essential for this process. Among AMPK downstream targets proposed to regulate cell proliferation, we showed that neither the p70 ribosomal S6 protein kinase/eukaryotic elongation factor 2-dependent protein synthesis pathway nor p21 was involved, whereas p27 expression was increased by A-769662. Silencing p27 expression partially prevented the A-769662-dependent inhibition of MSC proliferation. Conclusion MSCs resist hypoxia independently of AMPK whereas chronic AMPK activation inhibits MSC proliferation, p27 being involved in this regulatio
Etude du rôle biologique de la protéine de "choc thermique" HSP27
Doctorat en Sciencesinfo:eu-repo/semantics/nonPublishe
Etude du rôle biologique de la protéine de "choc thermique" HSP27
Doctorat en Sciencesinfo:eu-repo/semantics/nonPublishe
MCF-7 mammary tumour cells express the myeloid cell differentiation controlling factor, serine protease 3/myeloblastin
SCOPUS: ar.jFLWINinfo:eu-repo/semantics/publishe
Effects of antisense hsp27 gene expression in osteosarcoma cells.
SCOPUS: le.jinfo:eu-repo/semantics/publishe
Antisense inhibition of the 27 kDa heat shock protein production affects growth rate and cytoskeletal organization in MCF-7 cells
SCOPUS: ar.jFLWNAinfo:eu-repo/semantics/publishe
- …