7 research outputs found

    Die Rolle der Autophagie und des mitochondrialen Stoffwechsels im Zellkulturmodell des Pankreasadenokarzinoms in Anpassung an Stressbedingungen

    No full text
    Das Pankreasadenokarzinom (PDAC) ist aufgrund seiner hohen LetalitĂ€t die vierthĂ€ufigste Todesursache unter den Krebserkrankungen in der westlichen Welt. PDAC ist durch eine erhebliche desmoplastische Stromareaktion mit geringer Vaskularisierung gekennzeichnet, so dass die Karzinomzellen stĂ€ndigem NĂ€hrstoffmangel und Hypoxie ausgesetzt sind. In gesunden Zellen wird die Autophagie, welche konstitutiv auf einem basalen Niveau aktiv ist, als Reaktion auf umweltbedingte Stressfaktoren als Recyclingmechanismus aktiviert, um die Zellen mit NĂ€hrstoffen zu versorgen. In dieser Arbeit konnte gezeigt werden, dass die Basalautophagie in den Karzinomzellen so hoch war, dass eine zusĂ€tzliche Aktivierung durch MangelzustĂ€nde nur schwach oder ĂŒberhaupt nicht möglich war. Als Ursache hierfĂŒr ist die fehlende SensitivitĂ€t von mTOR zu nennen, wodurch eine verminderte Reaktion auf NĂ€hrstoffmangel oder Hypoxie bedingt ist. Ebenso sind Mutationen im KRAS-Gen, welche den RAS-Signalweg konstitutiv aktivieren, dafĂŒr verantwortlich, die Autophagie auch unter normalen Bedingungen zu steigern, so dass eine zusĂ€tzliche Induktion kaum möglich ist. Diese erhöhte Basalautophagie ist fĂŒr die gesteigerte Proliferationsrate der Karzinomzellen sowie fĂŒr die Versorgung der Zellen mit AminosĂ€uren notwendig. Weiterhin konnte gezeigt werden, dass sich Karzinomzellen durch einen uneinheitlichen oxidativen/ glykolytischen Stoffwechsel auszeichnen, wobei die oxidative Phosphorylierung eine grĂ¶ĂŸere Bedeutung innehat. In der vorliegenden Arbeit konnte gezeigt werden, dass die Proliferation der Karzinomzellen unter OXPHOS-Inhibitoren unterdrĂŒckt wurde. Dieses Ergebnis weist darauf hin, dass die Aufrechterhaltung der oxidativen Phosphorylierung der SchlĂŒsselmechanismus ist, ĂŒber den Autophagie und NĂ€hrstoffversorgung zum Zellwachstum beitragen. Dies stellt einen Widerspruch zur Warburg-Hypothese dar. Die Ergebnisse dieser Arbeit zeigen auf, dass der Mechanismus der Autophagie ein therapeutisches Target fĂŒr eine unterstĂŒtzende Therapie im Pankreaskarzinom darstellt, welches in nachfolgenden Arbeiten weiterfĂŒhrend evaluiert werden muss.Pancreatic adenocarcinoma (PDAC) is the fourth most common cause of death among cancers in the western world due to its high mortality rate. PDAC is characterized by a significant desmoplastic stroma reaction with low vascularization, so that the carcinoma cells are exposed to constant nutrient deficiency and hypoxia. In healthy cells, autophagy, which is constitutively active at a basal level, is activated as a recycling mechanism in response to environmental stress factors to supply the cells with nutrients. In this work it could be shown that the basal autophagy in carcinoma cells was so high that additional activation due to deficiencies was only weak or not possible at all. The reason for this is the lack of sensitivity of mTOR, which causes a reduced reaction to nutrient deficiency or hypoxia. Mutations in the KRAS gene, which constitutively activate the RAS signaling pathway, are also responsible for increasing autophagy even under normal conditions, so that additional induction is hardly possible. This increased basal autophagy is necessary for the increased proliferation rate of the carcinoma cells as well as for the supply of the cells with amino acids. Furthermore, it has been shown that carcinoma cells are characterized by a heterogeneous oxidative/glycolytic metabolism, whereas oxidative phosphorylation plays is more important. In the present study it could be shown that the proliferation of carcinoma cells was suppressed under OXPHOS inhibitors. This result indicates that the maintenance of oxidative phosphorylation is the key mechanism by which autophagy and nutrient supply contribute to cell growth. This contradicts the Warburg hypothesis. The results of this work show that the mechanism of autophagy represents a therapeutic target for supportive therapy in pancreatic cancer, which will need to be further evaluated in future studies

    Complement Component 5 Mediates Development of Fibrosis, via Activation of Stellate Cells, in 2 Mouse Models of Chronic Pancreatitis

    Get PDF
    Background & AimsLittle is known about the pathogenic mechanisms of chronic pancreatitis. We investigated the roles of complement component 5 (C5) in pancreatic fibrogenesis in mice and patients.MethodsChronic pancreatitis was induced by ligation of the midpancreatic duct, followed by a single supramaximal intraperitoneal injection of cerulein, in C57Bl6 (control) and C5-deficient mice. Some mice were given injections of 2 different antagonists of the receptor for C5a over 21 days. In a separate model, mice were given injections of cerulein for 10 weeks to induce chronic pancreatitis. Direct effects of C5 were studied in cultured primary cells. We performed genotype analysis for the single-nucleotide polymorphisms rs 17611 and rs 2300929 in C5 in patients with pancreatitis and healthy individuals (controls). Blood cells from 976 subjects were analyzed by transcriptional profiling.ResultsDuring the initial phase of pancreatitis, levels of pancreatic damage were similar between C5-deficient and control mice. During later stages of pancreatitis, C5-deficient mice and mice given injections of C5a-receptor antagonists developed significantly less pancreatic fibrosis than control mice. Primary pancreatic stellate cells were activated in vitro by C5a. There were no differences in the rs 2300929 SNP between subjects with or without pancreatitis, but the minor allele rs17611 was associated with a significant increase in levels of C5 in whole blood.ConclusionsIn mice, loss of C5 or injection of a C5a-receptor antagonist significantly reduced the level of fibrosis of chronic pancreatitis, but this was not a consequence of milder disease in early stages of pancreatitis. C5 might be a therapeutic target for chronic pancreatitis
    corecore