6 research outputs found

    Composite Detectors Based on Single-Crystalline Films and Single Crystals of Garnet Compounds

    No full text
    This manuscript summarizes recent results on the development of composite luminescent materials based on the single-crystalline films and single crystals of simple and mixed garnet compounds obtained by the liquid-phase epitaxy growth method. Such composite materials can be applied as scintillating and thermoluminescent (TL) detectors for radiation monitoring of mixed ionization fluxes, as well as scintillation screens in the microimaging techniques. The film and crystal parts of composite detectors were fabricated from efficient scintillation/TL materials based on Ce3+-, Pr3+-, and Sc3+-doped Lu3Al5O12 garnets, as well as Ce3+-doped Gd3−xAxAl5−yGayO12 mixed garnets, where A = Lu or Tb; x = 0–1; y = 2–3 with significantly different scintillation decay or positions of the main peaks in their TL glow curves. This work also summarizes the results of optical study of films, crystals, and epitaxial structures of these garnet compounds using absorption, cathodoluminescence, and photoluminescence. The scintillation and TL properties of the developed materials under α- and β-particles and γ-quanta excitations were studied as well. The most efficient variants of the composite scintillation and TL detectors for monitoring of composition of mixed beams of ionizing radiation were selected based on the results of this complex study

    Basic Characteristics of Dose Distributions of Photons Beam for Radiotherapeutic Applications Using YAG:Ce Crystal Detectors

    No full text
    Thermostimulated luminescence (TSL) dosimetry is a versatile tool for the assessment of dose from ionizing radiation. In this work, the Ce3+ doped Y3Al5O12 garnet (YAG:Ce) with a density ρ = 4.56 g/cm3 and effective atomic number Zeff = 35 emerged as a prospective TSL material in radiotherapy applications due to its excellent radiation stability, uniformity of structural and optical properties, high yield of TSL, and good position of main glow peak around 290–300 °C. Namely, the set of TSL detectors produced from the YAG:Ce single crystal is used for identification of the uniformity of dose and energy spectra of X-ray radiation generated by the clinical accelerator with 6 MV and 15 MV beams located in Radiotherapy Department at the Oncology Center in Bydgoszcz, Poland. We have found that the YAG:Ce crystal detects shows very promising results for registration of X-ray radiation generated by the accelerator with 6 MV beam. The next step in the research is connected with application of TSL detectors based on the crystals of much heavier garnets than YAG. It is estimated that the LuAG:Ce garnet crystals with high density ρ = 6.0 g/cm3 and Zeff = 62 can be used to evaluate the X-rays produced by the accelerator with the 15 MV beam

    Development of the Composite Thermoluminescent Detectors Based on the Single Crystalline Films and Crystals of Perovskite Compounds

    No full text
    This work is dedicated to the development of new types of composite thermoluminescent detectors based on the single crystalline films of Ce-doped GdAlO3 perovskite and Mn-doped YAlO3 and (Lu0.8Y0.2)AlO3:Mn perovskites as well as Ce and Pr-doped YAlO3 single crystal substrates. These detectors were obtained using the Liquid Phase Epitaxy growth method from the melt solution based on the PbO-B2O3 fluxes. Such composite detectors can by applied for the simultaneous registration of different components of mixed ionization fluxes using the differences between the thermoluminescent glow curves, recorded from the film and crystal parts of epitaxial structures. For creation of the new composite detectors, we considered using, for the film and crystal components of epitaxial structures (i) the different perovskite matrixes doped with the same type of activator or (ii) the same perovskite host with various types of activators. The thermoluminescent properties of the different types of epitaxial structures based on the abovementioned films and crystal substrates were examined in the conditions of β-particles and X-ray excitation with aim of determination of the optimal combination of perovskites for composite detectors. It was shown that, among the structures with all the studied compositions, the best properties for the simultaneous thermoluminescent detection of α- and X-rays were the GdAlO3:Ce film/YAlO3:Ce crystal epitaxial structure

    LPE Growth of Composite Thermoluminescent Detectors Based on the Lu3−xGdxAl5O12:Ce Single Crystalline Films and YAG:Ce Crystals

    No full text
    This work is dedicated to the development of new types of composite thermoluminescent (TL) detectors for simultaneous registration of the different components of ionization radiation based on the single crystalline films (SCFs) of Ce3+-doped Lu3−xGdxAl5O12:Ce (x = 0–1.5) garnet and Y3Al5O12:Ce (YAG:Ce) substrates using the liquid phase epitaxy (LPE) growth method. For this purpose, the TL properties of the mentioned epitaxial structures were examined in Risø TL/OSL-DA-20 reader under excitation by α- and β-particles from 242Am and 90Sr-90Y sources. We have shown that the cation engineering of SCF content can result in more significant separation of the TL glow curves of SCFs and substrates under α- and β-particle excitations in comparison with the prototype of such composite detectors based on the Lu3Al5O12:Ce (LuAG:Ce)/YAG:Ce epitaxial structure. Specifically, the difference between the TL glow curves of Lu1.5Gd1.5Al5O12:Ce SCFs and YAG:Ce substrates increases up to 120 K in comparison with a respective value of 80 degrees in the prototype based on the LuAG:Ce/YAG:Ce epitaxial structure. Therefore, the LPE-grown epitaxial structures containing Lu1.5Gd1.5Al5O12:Ce SCFs and Ce3+-doped YAG:Ce substrate can be successfully applied for simultaneous registration of α- and β-particles in mixed fluxes of ionization radiation

    Composite Detectors Based on Single-Crystalline Films and Single Crystals of Garnet Compounds

    No full text
    This manuscript summarizes recent results on the development of composite luminescent materials based on the single-crystalline films and single crystals of simple and mixed garnet compounds obtained by the liquid-phase epitaxy growth method. Such composite materials can be applied as scintillating and thermoluminescent (TL) detectors for radiation monitoring of mixed ionization fluxes, as well as scintillation screens in the microimaging techniques. The film and crystal parts of composite detectors were fabricated from efficient scintillation/TL materials based on Ce3+-, Pr3+-, and Sc3+-doped Lu3Al5O12 garnets, as well as Ce3+-doped Gd3−xAxAl5−yGayO12 mixed garnets, where A = Lu or Tb; x = 0–1; y = 2–3 with significantly different scintillation decay or positions of the main peaks in their TL glow curves. This work also summarizes the results of optical study of films, crystals, and epitaxial structures of these garnet compounds using absorption, cathodoluminescence, and photoluminescence. The scintillation and TL properties of the developed materials under α- and β-particles and γ-quanta excitations were studied as well. The most efficient variants of the composite scintillation and TL detectors for monitoring of composition of mixed beams of ionizing radiation were selected based on the results of this complex study
    corecore