4 research outputs found

    Validation of a Laser Ranged Scanner-Based Detection of Spatio-Temporal Gait Parameters Using the aTUG Chair

    No full text
    This article covers the suitability to measure gait-parameters via a Laser Range Scanner (LRS) that was placed below a chair during the walking phase of the Timed Up&Go Test in a cohort of 92 older adults (mean age 73.5). The results of our study demonstrated a high concordance of gait measurements using a LRS in comparison to the reference GAITRite walkway. Most of aTUG’s gait parameters demonstrate a strong correlation coefficient with the GAITRite, indicating high measurement accuracy for the spatial gait parameters. Measurements of velocity had a correlation coefficient of 99%, which can be interpreted as an excellent measurement accuracy. Cadence showed a slightly lower correlation coefficient of 96%, which is still an exceptionally good result, while step length demonstrated a correlation coefficient of 98% per leg and stride length with an accuracy of 99% per leg. In addition to confirming the technical validation of the aTUG regarding its ability to measure gait parameters, we compared results from the GAITRite and the aTUG for several parameters (cadence, velocity, and step length) with results from the Berg Balance Scale (BBS) and the Activities-Specific Balance Confidence-(ABC)-Scale assessments. With confidence coefficients for BBS and velocity, cadence and step length ranging from 0.595 to 0.798 and for ABC ranging from 0.395 to 0.541, both scales demonstrated only a medium-sized correlation. Thus, we found an association of better walking ability (represented by the measured gait parameters) with better balance (BBC) and balance confidence (ABC) overall scores via linear regression. This results from the fact that the BBS incorporates both static and dynamic balance measures and thus, only partly reflects functional requirements for walking. For the ABC score, this effect was even more pronounced. As this is to our best knowledge the first evaluation of the association between gait parameters and these balance scores, we will further investigate this phenomenon and aim to integrate further measures into the aTUG to achieve an increased sensitivity for balance ability

    The Lower Saxony research network design of environments for ageing : towards interdisciplinary research on information and communication technologies in ageing societies

    No full text
    Worldwide, ageing societies are bringing challenges for independent living and healthcare. Health-enabling technologies for pervasive healthcare and sensor-enhanced health information systems offer new opportunities for care. In order to identify, implement and assess such new information and communication technologies (ICT) the 'Lower Saxony Research Network Design of Environments for Ageing' (GAL) has been launched in 2008 as interdisciplinary research project. In this publication, we inform about the goals and structure of GAL, including first outcomes, as well as to discuss the potentials and possible barriers of such highly interdisciplinary research projects in the field of health-enabling technologies for pervasive healthcare. Although GAL's high interdisciplinarity at the beginning slowed down the speed of research progress, we can now work on problems, which can hardly be solved by one or few disciplines alone. Interdisciplinary research projects on ICT in ageing societies are needed and recommended

    Information and communication technologies for promoting and sustaining quality of life, health and self-sufficiency in ageing societies – outcomes of the Lower Saxony Research Network Design of Environments for Ageing

    No full text
    corecore