10,238 research outputs found
A Method to Separate Stochastic and Deterministic Information from Electrocardiograms
In this work we present a new idea to develop a method to separate stochastic
and deterministic information contained in an electrocardiogram, ECG, which may
provide new sources of information with diagnostic purposes. We assume that the
ECG has information corresponding to many different processes related with the
cardiac activity as well as contamination from different sources related with
the measurement procedure and the nature of the observed system itself. The
method starts with the application of an improuved archetypal analysis to
separate the mentioned stochastic and deterministic information. From the
stochastic point of view we analyze Renyi entropies, and with respect to the
deterministic perspective we calculate the autocorrelation function and the
corresponding correlation time. We show that healthy and pathologic information
may be stochastic and/or deterministic, can be identified by different measures
and located in different parts of the ECG.Comment: 4 pages, 6 figure
Recommended from our members
Nanotailoring Stereolithography Resins for Unique Applications using Carbon Nanotubes
Nanostructured materials and exploiting their properties in stereolithography (SL) may open
new markets for unique rapidly manufactured functional devices. Controlled amounts of multiwalled carbon nanotubes (MWCNTs) were successfully dispersed in SL epoxy-based resins and
complex three-dimensional (3D) parts were successfully fabricated by means of a multi-material
SL setup. The effect of the nanosized filler was evaluated using mechanical testing. Small
dispersions of MWCNTs resulted in significant effects on the physical properties of the
polymerized resin. A MWCNT concentration of .05 wt% (w/v) in DSM Somos® WaterShed™
11120 resin increased the ultimate tensile stress and fracture stress an average of 17% and 37%,
respectively. Electron microscopy was used to examine the morphology of the nanocomposite
and results showed affinity between the MWCNTs and SL resin and identified buckled
nanotubes that illustrated strong interfacial bonding. These improved physical properties may
provide opportunities for using nanocomposite SL resins in end-use applications. Varying types
and concentrations of nanomaterials can be used to tailor existing SL resins for particular
applications.Mechanical Engineerin
The Simple Non-degenerate Relativistic Gas: Statistical Properties and Brownian Motion
This paper shows a novel calculation of the mean square displacement of a
classical Brownian particle in a relativistic thermal bath. The result is
compared with the expressions obtained by other authors. Also, the
thermodynamic properties of a non-degenerate simple relativistic gas are
reviewed in terms of a treatment performed in velocity space.Comment: 6 pages, 2 figure
Quo Vadis Dry Reforming of Methane?—A Review on Its Chemical, Environmental, and Industrial Prospects
In recent years, the catalytic dry reforming of methane (DRM) has increasingly come into academic focus. The interesting aspect of this reaction is seemingly the conversion of CO2 and methane, two greenhouse gases, into a valuable synthesis gas (syngas) mixture with an otherwise unachievable but industrially relevant H2/CO ratio of one. In a possible scenario, the chemical conversion of CO2 and CH4 to syngas could be used in consecutive reactions to produce synthetic fuels, with combustion to harness the stored energy. Although the educts of DRM suggest a superior impact of this reaction to mitigate global warming, its potential as a chemical energy converter and greenhouse gas absorber has still to be elucidated. In this review article, we will provide insights into the industrial maturity of this reaction and critically discuss its applicability as a cornerstone in the energy transition. We derive these insights from assessing the current state of research and knowledge on DRM. We conclude that the entire industrial process of syngas production from two greenhouse gases, including heating with current technologies, releases at least 1.23 moles of CO2 per mol of CO2 converted in the catalytic reaction. Furthermore, we show that synthetic fuels derived from this reaction exhibit a negative carbon dioxide capturing efficiency which is similar to burning methane directly in the air. We also outline potential applications and introduce prospective technologies toward a net-zero CO2 strategy based on DRM
The Rayleigh-Brillouin Spectrum in Special Relativistic Hydrodynamics
In this paper we calculate the Rayleigh-Brillouin spectrum for a relativistic
simple fluid according to three different versions available for a relativistic
approach to non-equilibrium thermodynamics. An outcome of these calculations is
that Eckart's version predicts that such spectrum does not exist. This provides
an argument to question its validity. The remaining two results, which differ
one from another, do provide a finite form for such spectrum. This raises the
rather intriguing question as to which of the two theories is a better
candidate to be taken as a possible version of relativistic non-equilibrium
thermodynamics. The answer will clearly require deeper examination of this
problem.Comment: 13 pages, no figures. Accepted for publication in Phys. Rev.
- …