30 research outputs found

    Electric Field Effect Analysis of Thin PbTe films on high-epsilon SrTiO3 Substrate

    Full text link
    Thin PbTe films (thickness 500 - 600 angstrom), deposited on SrTiO3, have been investigated by electric field effect (EFE). The high resistivity of such thin films warrants a high sensitivity of the EFE method. The SrTiO3 substrate serves as the dielectric layer in the Gate-Dielectric-PbTe structure. Due to the large dielectric constant of SrTiO3, particularly at low temperatures, the electric displacement D in the film reaches the high value of about 10^8 V/cm, and the EFE introduced charge into the PbTe film amounts to ~ 8 microC/cm2. The high D permits to measure the EFE resistance and Hall constant over a wide region of D, revealing the characteristic features of their D-dependence. An appropriate theoretical model has been formulated, showing that, for such films, one can measure the dependence of the Fermi level on D. In fact, we demonstrate that shifting the Fermi level across the gap by varying D, the density-of-states of the in-gape states can be mapped out. Our results show, that the PbTe layers studied, possess a mobility gap exceeding the gap of bulk PbTe.Comment: 27 pages, 12 figure

    Thermal Wave Induced Edge Electrical Field of Pyroelectric: Spatial Pattern Mapping and Effect of Ambient Conditions

    Full text link
    We have recently analyzed theoretically the main characteristics of the edge depolarizing electric field (EDEF), in the vicinity of a non-polar face of a pyroelectric. In this work we measured and characterized the EDEF, excited by a harmonical thermal wave. We present here experimental results obtained on a pyroelectric crystal LiTaO3, confirming our theoretical predictions. We present the theoretical analysis and description of the thermal wave and the induced harmonically varying EDEF. The calculations assume an equivalent circuit of a pyroelectric capacitive current source. The measured magnitude of the EDEF and its spatial variation agree well with the theoretical model. The effect of the air pressure at the pyroelectric/air interface, on the EDEF, was determined in the interval 10^3 - 10^-6 torr. We found that EDEF increases significantly with decreasing air pressure, presumably due to diminishing of adsorption screening at the polar faces. Teflon plates, covering the polar faces, prevent accumulation of screening charged particles, resulting in a drastic increase of EDEF

    Characterization of high-temperature PbTe p-n junctions prepared by thermal diffusion and by ion-implantation

    Full text link
    We describe here the characteristics of two types of high-quality PbTe p-n-junctions, prepared in this work: (1) by thermal diffusion of In4Te3 gas (TDJ), and (2) by ion implantation (implanted junction, IJ) of In (In-IJ) and Zn (Zn-IJ). The results, as presented here, demonstrate the high quality of these PbTe diodes. Capacitance-voltage and current-voltage characteristics have been measured. The measurements were carried out over a temperature range from ~ 10 K to ~ 180 K. The latter was the highest temperature, where the diode still demonstrated rectifying properties. This maximum operating temperature is higher than any of the earlier reported results. The saturation current density, J0, in both diode types, was ~ 10^-5 A/cm2 at 80 K, while at 180 K J0 ~ 10^-1 A/cm2 in TDJ and ~ 1 A/cm2 in both ion-implanted junctions. At 80 K the reverse current started to increase markedly at a bias of ~ 400 mV for TDJ, and at ~550 mV for IJ. The ideality factor n was about 1.5-2 for both diode types at 80 K. The analysis of the C-V plots shows that the junctions in both diode types are linearly graded. The analysis of the C-V plots allows also determining the height of the junction barrier, the concentrations and the concentration gradient of the impurities, and the temperature dependence of the static dielectric constant. The zero-bias-resistance x area products (R0Ae) at 80 K are: 850 OHMcm2 for TDJ, 250 OHMcm2 for In-IJ, and ~ 80 OHMcm2 for Zn-IJ, while at 180 K R0Ae ~ 0.38 OHMcm2 for TDJ, and ~ 0.1 OHMcm2 for IJ. The estimated detectivity is: D* ~ 10^10 cmHz^(1/2)/W up to T=140 K, determined mainly by background radiation, while at T=180 K, D* decreases to 108-107 cmHz^(1/2)/W, and is determined by the Johnson noise

    Π”Π•Π’Π˜Π’ΠΠ›Π˜Π—Π˜Π ΠžΠ’ΠΠΠΠ«Π• Π‘ΠžΠ‘Π£Π”Π˜Π‘Π’Π«Π• ΠŸΠ ΠžΠ’Π•Π—Π«: Π˜Π‘Π‘Π›Π•Π”ΠžΠ’ΠΠΠ˜Π• IN VIVO

    Get PDF
    Porcine intrathoracic arteries were devitalized by application of low temperatures and electron beam irradiati- on. The resulted connective tissues vascular scaffolds could be used as the prosthesis of small diameter arteries (≀6 mm). Biocompatibility, immunogenicity degree and thrombogenicity were estimated in the study. Results of electron microscopy are presented. Described treatment reduces an immunogenicity of xenoarteries, their ade- quate functioning during 6 months was shown by means of experimental surgeries. Для Π΄Π΅Π²ΠΈΡ‚Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΡ… Π³Ρ€ΡƒΠ΄Π½Ρ‹Ρ… Π°Ρ€Ρ‚Π΅Ρ€ΠΈΠΉ свинСй использовали Π½ΠΈΠ·ΠΊΠΈΠ΅ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ ΠΈ ΠΎΠ±Π»ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΏΠΎΡ‚ΠΎΠΊΠΎΠΌ элСктронов. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡ‚ΠΊΠ°Π½Π½Ρ‹Π΅ сосудистыС скаффолды Π² Π΄Π°Π½Π½ΠΎΠΌ исслСдовании Π±Ρ‹Π»ΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ Π² качСствС ΠΏΡ€ΠΎΡ‚Π΅Π·ΠΎΠ² Π°Ρ€Ρ‚Π΅Ρ€ΠΈΠΉ ΠΌΠ°Π»ΠΎΠ³ΠΎ Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€Π° (≀6 ΠΌΠΌ). Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ ΠΈΠ·ΡƒΡ‡Π°Π»ΠΈ биосовмС- ΡΡ‚ΠΈΠΌΠΎΡΡ‚ΡŒ, ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ иммуногСнности, Ρ‚Ρ€ΠΎΠΌΠ±ΠΎΠ³Π΅Π½Π½ΠΎΡΡ‚ΡŒ Π΄Π΅Π²ΠΈΡ‚Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π°Ρ€Ρ‚Π΅Ρ€ΠΈΠΉ. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°- Ρ‚Ρ‹ элСктронной микроскопии. Показано сниТСниС иммуногСнности Π΄Π΅Π²ΠΈΡ‚Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ксСноартСрий. Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ продСмонстрировали ΠΈΡ… Π°Π΄Π΅ΠΊΠ²Π°Ρ‚Π½ΠΎΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 6 мСс.

    The perspective of application of carburized steels, manufactured according to European standard, for gears of domestic mobile machines

    Get PDF
    Based on the data on the chemical composition of cemented steels produced according to the European standard EN 10084, the calculation of their hardenability by different methods was carried out. The use of methods is justified by comparing the results of the race with the experiment. The assessment of applicability of the analyzed steels for gears of transmissions of domestic mobile machines is carried out. The classification of cemented economically alloyed steels with chemical composition according to EN 10084 norms according to the criterion of hardenability is developed, according to which these steels can be divided into 4 groups according to the applicability for transmission gears of domestic automotive technology: for gears with a module of up to 4 mm, up to 5 mm, up to 8 mm and up to 10 mm

    ΠœΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½Ρ– характСристики сСрця Ρ‰ΡƒΡ€Ρ–Π² Π·Π° ΡƒΠΌΠΎΠ² Π΅ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π½Π΅ΠΊΡ€ΠΎΠ·Ρƒ ΠΌΡ–ΠΎΠΊΠ°Ρ€Π΄Π°.

    No full text
    To elucidate pathogenetic mechanisms of myocardium necrosis, to develop the preventive and treatment measures its experimental studying in different models is necessary. The paper covers the dynamics of morphological changes in myocardium after cryoeffect in heart for 15 and 30 sec, ligation of left coronary artery and introduction of adrenalin toxic doses.It has been established that cryoeffect to heart led to the appearance of necrotic zone in myocardium with no ischemic inflammation phase, herewith the depth of cardiac muscle lesion depended directly on cryoeffect duration. The ligation of coronary artery contributed to the formation of ischemic necrosis of myocardium in the zone of ligated vessel basin with manifested discirculatory disorders. Focus lesion of myocardium resulted from the introduction of toxic doses of adrenalin was focused around arterial vessels, which later led to periarterial proliferation of fibroblasts and formation of granulation tissue.Для ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠ³ΠΎ понимания патогСнСтичСских ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² Π½Π΅ΠΊΡ€ΠΎΠ·Π° ΠΌΠΈΠΎΠΊΠ°Ρ€Π΄Π°, Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² ΠΏΡ€ΠΎΡ„ΠΈΠ»Π°ΠΊΡ‚ΠΈΠΊΠΈ ΠΈ лСчСния Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Π΅Π³ΠΎ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ΅ исслСдованиС Π½Π° Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… модСлях. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ прСдставлСна Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ° морфологичСских ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ Π² ΠΌΠΈΠΎΠΊΠ°Ρ€Π΄Π΅ послС криовоздСйствия Π½Π° сСрдцС Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 15 ΠΈ 30 с, пСрСвязки Π»Π΅Π²ΠΎΠΉ ΠΊΠΎΡ€ΠΎΠ½Π°Ρ€Π½ΠΎΠΉ Π°Ρ€Ρ‚Π΅Ρ€ΠΈΠΈ ΠΈ ввСдСния токсичСских Π΄ΠΎΠ· Π°Π΄Ρ€Π΅Π½Π°Π»ΠΈΠ½Π°. УстановлСно, Ρ‡Ρ‚ΠΎ криовоздСйствиС Π½Π° сСрдцС ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΠ»ΠΎ ΠΊ появлСнию нСкротичСской Π·ΠΎΠ½Ρ‹ Π² ΠΌΠΈΠΎΠΊΠ°Ρ€Π΄Π΅ Π±Π΅Π· ΠΈΡˆΠ΅ΠΌΠΈΡ‡Π΅ΡΠΊΠΎΠΉ Ρ„Π°Π·Ρ‹ воспалСния, ΠΏΡ€ΠΈ этом Π³Π»ΡƒΠ±ΠΈΠ½Π° пораТСния сСрдСчной ΠΌΡ‹ΡˆΡ†Ρ‹ Π½Π°ΠΏΡ€ΡΠΌΡƒΡŽ зависСла ΠΎΡ‚ Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ криовоздСйствия. ΠŸΠ΅Ρ€Π΅Π²ΡΠ·ΠΊΠ° ΠΊΠΎΡ€ΠΎΠ½Π°Ρ€Π½ΠΎΠΉ Π°Ρ€Ρ‚Π΅Ρ€ΠΈΠΈ способствовала Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡŽ ΠΈΡˆΠ΅ΠΌΠΈΡ‡Π΅ΡΠΊΠΎΠ³ΠΎ Π½Π΅ΠΊΡ€ΠΎΠ·Π° ΠΌΠΈΠΎΠΊΠ°Ρ€Π΄Π° Π² Π·ΠΎΠ½Π΅ бассСйна Π»ΠΈΠ³ΠΈΡ€ΠΎΠ²Π°Π½ΠΎΠ³ΠΎ сосуда с ярко Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹ΠΌΠΈ дисциркуляторными Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡΠΌΠΈ. ΠžΡ‡Π°Π³ΠΎΠ²ΠΎΠ΅ ΠΏΠΎΡ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠΈΠΎΠΊΠ°Ρ€Π΄Π°, Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡŽΡ‰Π΅Π΅ послС ввСдСния токсичСских Π΄ΠΎΠ· Π°Π΄Ρ€Π΅Π½Π°Π»ΠΈΠ½Π°, Π±Ρ‹Π»ΠΎ сосрСдоточСно Π²ΠΎΠΊΡ€ΡƒΠ³ Π°Ρ€Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… сосудов, Ρ‡Ρ‚ΠΎ Π² послСдствиС ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΠ»ΠΎ ΠΊ ΠΏΠ΅Ρ€ΠΈΠ°Ρ€Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΏΡ€ΠΎΠ»ΠΈΡ„Π΅Ρ€Π°Ρ†ΠΈΠΈ фибробластов ΠΈ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡŽ грануляционной Ρ‚ΠΊΠ°Π½ΠΈ.Для ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠ³ΠΎ розуміння ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π΅Ρ‚ΠΈΡ‡Π½ΠΈΡ… ΠΌΠ΅Ρ…Π°Π½Ρ–Π·ΠΌΡ–Π² Π½Π΅ΠΊΡ€ΠΎΠ·Ρƒ ΠΌΡ–ΠΎΠΊΠ°Ρ€Π΄Π°, Ρ€ΠΎΠ·Ρ€ΠΎΠ±ΠΊΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ–Π² ΠΏΡ€ΠΎΡ„Ρ–Π»Π°ΠΊΡ‚ΠΈΠΊΠΈ Ρ– лікування Π½Π΅ΠΎΠ±Ρ…Ρ–Π΄Π½Π΅ ΠΉΠΎΠ³ΠΎ Π΅ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Π΅ дослідТСння Π½Π° Ρ€Ρ–Π·Π½ΠΈΡ… модСлях. Π£ статті прСдставлСна Π΄ΠΈΠ½Π°ΠΌΡ–ΠΊΠ° ΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΡ… Π·ΠΌΡ–Π½ Ρƒ ΠΌΡ–ΠΎΠΊΠ°Ρ€Π΄Ρ– після кріовтручання Π½Π° сСрці протягом 15 Ρ– 30 с, ΠΏΠ΅Ρ€Π΅Π²'язки Π»Ρ–Π²ΠΎΡ— ΠΊΠΎΡ€ΠΎΠ½Π°Ρ€Π½ΠΎΡ— Π°Ρ€Ρ‚Π΅Ρ€Ρ–Ρ— Ρ– ввСдСння токсичних Π΄ΠΎΠ· Π°Π΄Ρ€Π΅Π½Π°Π»Ρ–Π½Ρƒ. ВстановлСно, Ρ‰ΠΎ кріовтручання Π½Π° сСрці ΠΏΡ€ΠΈΠ·Π²ΠΎΠ΄ΠΈΠ»ΠΎ Π΄ΠΎ появи Π½Π΅ΠΊΡ€ΠΎΡ‚ΠΈΡ‡Π½ΠΎΡ— Π·ΠΎΠ½ΠΈ Π² ΠΌΡ–ΠΎΠΊΠ°Ρ€Π΄Ρ– Π±Π΅Π· Ρ–ΡˆΠ΅ΠΌΡ–Ρ‡Π½ΠΎΡ— Ρ„Π°Π·ΠΈ запалСння, ΠΏΡ€ΠΈ Ρ†ΡŒΠΎΠΌΡƒ Π³Π»ΠΈΠ±ΠΈΠ½Π° ураТСння сСрцСвого ΠΌ'яза Π±Π΅Π·ΠΏΠΎΡΠ΅Ρ€Π΅Π΄Π½ΡŒΠΎ Π·Π°Π»Π΅ΠΆΠ°Π»Π° Π²Ρ–Π΄ тривалості кріовтручання. ΠŸΠ΅Ρ€Π΅Π²'язка ΠΊΠΎΡ€ΠΎΠ½Π°Ρ€Π½ΠΎΡ— Π°Ρ€Ρ‚Π΅Ρ€Ρ–Ρ— сприяла Ρ„ΠΎΡ€ΠΌΡƒΠ²Π°Π½Π½ΡŽ Ρ–ΡˆΠ΅ΠΌΡ–Ρ‡Π½ΠΎΠ³ΠΎ Π½Π΅ΠΊΡ€ΠΎΠ·Ρƒ ΠΌΡ–ΠΎΠΊΠ°Ρ€Π΄Π° Π² Π·ΠΎΠ½Ρ– басСйну Π»Ρ–Π³ΠΎΠ²Π°Π½ΠΎΡ— судини Π· яскраво Π²ΠΈΡ€Π°ΠΆΠ΅Π½ΠΈΠΌΠΈ дісциркуляторними ΠΏΠΎΡ€ΡƒΡˆΠ΅Π½Π½ΡΠΌΠΈ. Π’ΠΎΠ³Π½Π΅Ρ‰Π΅Π²Π΅ ураТСння ΠΌΡ–ΠΎΠΊΠ°Ρ€Π΄Π°, Ρ‰ΠΎ Π²ΠΈΠ½ΠΈΠΊΠ°Ρ” після ввСдСння токсичних Π΄ΠΎΠ· Π°Π΄Ρ€Π΅Π½Π°Π»Ρ–Π½Ρƒ, Π±ΡƒΠ»ΠΎ зосСрСдТСно Π½Π°Π²ΠΊΠΎΠ»ΠΎ Π°Ρ€Ρ‚Π΅Ρ€Ρ–Π°Π»ΡŒΠ½ΠΈΡ… судин, Ρ‰ΠΎ ΠΏΡ€ΠΈΠ·Π²ΠΎΠ΄ΠΈΠ»ΠΎ Π΄ΠΎ ΠΏΠ΅Ρ€Ρ–Π°Ρ€Ρ‚Π΅Ρ€Ρ–Π°Π»ΡŒΠ½ΠΎΡ— ΠΏΡ€ΠΎΠ»Ρ–Ρ„Π΅Ρ€Π°Ρ†Ρ–Ρ— фібробластів Ρ– формування грануляційної Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ
    corecore