30 research outputs found
Electric Field Effect Analysis of Thin PbTe films on high-epsilon SrTiO3 Substrate
Thin PbTe films (thickness 500 - 600 angstrom), deposited on SrTiO3, have
been investigated by electric field effect (EFE). The high resistivity of such
thin films warrants a high sensitivity of the EFE method. The SrTiO3 substrate
serves as the dielectric layer in the Gate-Dielectric-PbTe structure. Due to
the large dielectric constant of SrTiO3, particularly at low temperatures, the
electric displacement D in the film reaches the high value of about 10^8 V/cm,
and the EFE introduced charge into the PbTe film amounts to ~ 8 microC/cm2. The
high D permits to measure the EFE resistance and Hall constant over a wide
region of D, revealing the characteristic features of their D-dependence. An
appropriate theoretical model has been formulated, showing that, for such
films, one can measure the dependence of the Fermi level on D. In fact, we
demonstrate that shifting the Fermi level across the gap by varying D, the
density-of-states of the in-gape states can be mapped out. Our results show,
that the PbTe layers studied, possess a mobility gap exceeding the gap of bulk
PbTe.Comment: 27 pages, 12 figure
Thermal Wave Induced Edge Electrical Field of Pyroelectric: Spatial Pattern Mapping and Effect of Ambient Conditions
We have recently analyzed theoretically the main characteristics of the edge
depolarizing electric field (EDEF), in the vicinity of a non-polar face of a
pyroelectric. In this work we measured and characterized the EDEF, excited by a
harmonical thermal wave. We present here experimental results obtained on a
pyroelectric crystal LiTaO3, confirming our theoretical predictions. We present
the theoretical analysis and description of the thermal wave and the induced
harmonically varying EDEF. The calculations assume an equivalent circuit of a
pyroelectric capacitive current source. The measured magnitude of the EDEF and
its spatial variation agree well with the theoretical model. The effect of the
air pressure at the pyroelectric/air interface, on the EDEF, was determined in
the interval 10^3 - 10^-6 torr. We found that EDEF increases significantly with
decreasing air pressure, presumably due to diminishing of adsorption screening
at the polar faces. Teflon plates, covering the polar faces, prevent
accumulation of screening charged particles, resulting in a drastic increase of
EDEF
Characterization of high-temperature PbTe p-n junctions prepared by thermal diffusion and by ion-implantation
We describe here the characteristics of two types of high-quality PbTe
p-n-junctions, prepared in this work: (1) by thermal diffusion of In4Te3 gas
(TDJ), and (2) by ion implantation (implanted junction, IJ) of In (In-IJ) and
Zn (Zn-IJ). The results, as presented here, demonstrate the high quality of
these PbTe diodes. Capacitance-voltage and current-voltage characteristics have
been measured. The measurements were carried out over a temperature range from
~ 10 K to ~ 180 K. The latter was the highest temperature, where the diode
still demonstrated rectifying properties. This maximum operating temperature is
higher than any of the earlier reported results.
The saturation current density, J0, in both diode types, was ~ 10^-5 A/cm2 at
80 K, while at 180 K J0 ~ 10^-1 A/cm2 in TDJ and ~ 1 A/cm2 in both
ion-implanted junctions. At 80 K the reverse current started to increase
markedly at a bias of ~ 400 mV for TDJ, and at ~550 mV for IJ. The ideality
factor n was about 1.5-2 for both diode types at 80 K. The analysis of the C-V
plots shows that the junctions in both diode types are linearly graded. The
analysis of the C-V plots allows also determining the height of the junction
barrier, the concentrations and the concentration gradient of the impurities,
and the temperature dependence of the static dielectric constant. The
zero-bias-resistance x area products (R0Ae) at 80 K are: 850 OHMcm2 for TDJ,
250 OHMcm2 for In-IJ, and ~ 80 OHMcm2 for Zn-IJ, while at 180 K R0Ae ~ 0.38
OHMcm2 for TDJ, and ~ 0.1 OHMcm2 for IJ. The estimated detectivity is: D* ~
10^10 cmHz^(1/2)/W up to T=140 K, determined mainly by background radiation,
while at T=180 K, D* decreases to 108-107 cmHz^(1/2)/W, and is determined by
the Johnson noise
ΠΠΠΠΠ’ΠΠΠΠΠΠ ΠΠΠΠΠΠ«Π Π‘ΠΠ‘Π£ΠΠΠ‘Π’Π«Π ΠΠ ΠΠ’ΠΠΠ«: ΠΠ‘Π‘ΠΠΠΠΠΠΠΠΠ IN VIVO
Porcine intrathoracic arteries were devitalized by application of low temperatures and electron beam irradiati- on. The resulted connective tissues vascular scaffolds could be used as the prosthesis of small diameter arteries (β€6 mm). Biocompatibility, immunogenicity degree and thrombogenicity were estimated in the study. Results of electron microscopy are presented. Described treatment reduces an immunogenicity of xenoarteries, their ade- quate functioning during 6 months was shown by means of experimental surgeries.Β ΠΠ»Ρ Π΄Π΅Π²ΠΈΡΠ°Π»ΠΈΠ·Π°ΡΠΈΠΈ Π²Π½ΡΡΡΠ΅Π½Π½ΠΈΡ
Π³ΡΡΠ΄Π½ΡΡ
Π°ΡΡΠ΅ΡΠΈΠΉ ΡΠ²ΠΈΠ½Π΅ΠΉ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΠΈ Π½ΠΈΠ·ΠΊΠΈΠ΅ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΡ ΠΈ ΠΎΠ±Π»ΡΡΠ΅Π½ΠΈΠ΅ ΠΏΠΎΡΠΎΠΊΠΎΠΌ ΡΠ»Π΅ΠΊΡΡΠΎΠ½ΠΎΠ². ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΠΊΠ°Π½Π½ΡΠ΅ ΡΠΎΡΡΠ΄ΠΈΡΡΡΠ΅ ΡΠΊΠ°ΡΡΠΎΠ»Π΄Ρ Π² Π΄Π°Π½Π½ΠΎΠΌ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΈ Π±ΡΠ»ΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Ρ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΏΡΠΎΡΠ΅Π·ΠΎΠ² Π°ΡΡΠ΅ΡΠΈΠΉ ΠΌΠ°Π»ΠΎΠ³ΠΎ Π΄ΠΈΠ°ΠΌΠ΅ΡΡΠ° (β€6 ΠΌΠΌ). Π ΡΠ°Π±ΠΎΡΠ΅ ΠΈΠ·ΡΡΠ°Π»ΠΈ Π±ΠΈΠΎΡΠΎΠ²ΠΌΠ΅- ΡΡΠΈΠΌΠΎΡΡΡ, ΡΡΠ΅ΠΏΠ΅Π½Ρ ΠΈΠΌΠΌΡΠ½ΠΎΠ³Π΅Π½Π½ΠΎΡΡΠΈ, ΡΡΠΎΠΌΠ±ΠΎΠ³Π΅Π½Π½ΠΎΡΡΡ Π΄Π΅Π²ΠΈΡΠ°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
Π°ΡΡΠ΅ΡΠΈΠΉ. ΠΡΠΈΠ²Π΅Π΄Π΅Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°- ΡΡ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠΉ ΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏΠΈΠΈ. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΈΠΌΠΌΡΠ½ΠΎΠ³Π΅Π½Π½ΠΎΡΡΠΈ Π΄Π΅Π²ΠΈΡΠ°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΠΊΡΠ΅Π½ΠΎΠ°ΡΡΠ΅ΡΠΈΠΉ. ΠΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΠ΅ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΈ ΠΏΡΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡΡΠΈΡΠΎΠ²Π°Π»ΠΈ ΠΈΡ
Π°Π΄Π΅ΠΊΠ²Π°ΡΠ½ΠΎΠ΅ ΡΡΠ½ΠΊΡΠΈΠΎΠ½ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ 6 ΠΌΠ΅Ρ.
The perspective of application of carburized steels, manufactured according to European standard, for gears of domestic mobile machines
Based on the data on the chemical composition of cemented steels produced according to the European standard EN 10084, the calculation of their hardenability by different methods was carried out. The use of methods is justified by comparing the results of the race with the experiment. The assessment of applicability of the analyzed steels for gears of transmissions of domestic mobile machines is carried out. The classification of cemented economically alloyed steels with chemical composition according to EN 10084 norms according to the criterion of hardenability is developed, according to which these steels can be divided into 4 groups according to the applicability for transmission gears of domestic automotive technology: for gears with a module of up to 4 mm, up to 5 mm, up to 8 mm and up to 10 mm
ΠΠΎΡΡΠΎΠ»ΠΎΠ³ΡΡΠ½Ρ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ ΡΠ΅ΡΡΡ ΡΡΡΡΠ² Π·Π° ΡΠΌΠΎΠ² Π΅ΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π½Π΅ΠΊΡΠΎΠ·Ρ ΠΌΡΠΎΠΊΠ°ΡΠ΄Π°.
To elucidate pathogenetic mechanisms of myocardium necrosis, to develop the preventive and treatment measures its experimental studying in different models is necessary. The paper covers the dynamics of morphological changes in myocardium after cryoeffect in heart for 15 and 30 sec, ligation of left coronary artery and introduction of adrenalin toxic doses.It has been established that cryoeffect to heart led to the appearance of necrotic zone in myocardium with no ischemic inflammation phase, herewith the depth of cardiac muscle lesion depended directly on cryoeffect duration. The ligation of coronary artery contributed to the formation of ischemic necrosis of myocardium in the zone of ligated vessel basin with manifested discirculatory disorders. Focus lesion of myocardium resulted from the introduction of toxic doses of adrenalin was focused around arterial vessels, which later led to periarterial proliferation of fibroblasts and formation of granulation tissue.ΠΠ»Ρ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΡ ΠΏΠ°ΡΠΎΠ³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΌΠ΅Ρ
Π°Π½ΠΈΠ·ΠΌΠΎΠ² Π½Π΅ΠΊΡΠΎΠ·Π° ΠΌΠΈΠΎΠΊΠ°ΡΠ΄Π°, ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΠΏΡΠΎΡΠΈΠ»Π°ΠΊΡΠΈΠΊΠΈ ΠΈ Π»Π΅ΡΠ΅Π½ΠΈΡ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎ Π΅Π³ΠΎ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π½Π° ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΠΌΠΎΠ΄Π΅Π»ΡΡ
. Π ΡΡΠ°ΡΡΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Π° Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ° ΠΌΠΎΡΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ Π² ΠΌΠΈΠΎΠΊΠ°ΡΠ΄Π΅ ΠΏΠΎΡΠ»Π΅ ΠΊΡΠΈΠΎΠ²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΡ Π½Π° ΡΠ΅ΡΠ΄ΡΠ΅ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ 15 ΠΈ 30 Ρ, ΠΏΠ΅ΡΠ΅Π²ΡΠ·ΠΊΠΈ Π»Π΅Π²ΠΎΠΉ ΠΊΠΎΡΠΎΠ½Π°ΡΠ½ΠΎΠΉ Π°ΡΡΠ΅ΡΠΈΠΈ ΠΈ Π²Π²Π΅Π΄Π΅Π½ΠΈΡ ΡΠΎΠΊΡΠΈΡΠ΅ΡΠΊΠΈΡ
Π΄ΠΎΠ· Π°Π΄ΡΠ΅Π½Π°Π»ΠΈΠ½Π°. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΊΡΠΈΠΎΠ²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ Π½Π° ΡΠ΅ΡΠ΄ΡΠ΅ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΠ»ΠΎ ΠΊ ΠΏΠΎΡΠ²Π»Π΅Π½ΠΈΡ Π½Π΅ΠΊΡΠΎΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π·ΠΎΠ½Ρ Π² ΠΌΠΈΠΎΠΊΠ°ΡΠ΄Π΅ Π±Π΅Π· ΠΈΡΠ΅ΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ°Π·Ρ Π²ΠΎΡΠΏΠ°Π»Π΅Π½ΠΈΡ, ΠΏΡΠΈ ΡΡΠΎΠΌ Π³Π»ΡΠ±ΠΈΠ½Π° ΠΏΠΎΡΠ°ΠΆΠ΅Π½ΠΈΡ ΡΠ΅ΡΠ΄Π΅ΡΠ½ΠΎΠΉ ΠΌΡΡΡΡ Π½Π°ΠΏΡΡΠΌΡΡ Π·Π°Π²ΠΈΡΠ΅Π»Π° ΠΎΡ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΠΊΡΠΈΠΎΠ²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΡ. ΠΠ΅ΡΠ΅Π²ΡΠ·ΠΊΠ° ΠΊΠΎΡΠΎΠ½Π°ΡΠ½ΠΎΠΉ Π°ΡΡΠ΅ΡΠΈΠΈ ΡΠΏΠΎΡΠΎΠ±ΡΡΠ²ΠΎΠ²Π°Π»Π° ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΈΡΠ΅ΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π½Π΅ΠΊΡΠΎΠ·Π° ΠΌΠΈΠΎΠΊΠ°ΡΠ΄Π° Π² Π·ΠΎΠ½Π΅ Π±Π°ΡΡΠ΅ΠΉΠ½Π° Π»ΠΈΠ³ΠΈΡΠΎΠ²Π°Π½ΠΎΠ³ΠΎ ΡΠΎΡΡΠ΄Π° Ρ ΡΡΠΊΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½Π½ΡΠΌΠΈ Π΄ΠΈΡΡΠΈΡΠΊΡΠ»ΡΡΠΎΡΠ½ΡΠΌΠΈ Π½Π°ΡΡΡΠ΅Π½ΠΈΡΠΌΠΈ. ΠΡΠ°Π³ΠΎΠ²ΠΎΠ΅ ΠΏΠΎΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠΈΠΎΠΊΠ°ΡΠ΄Π°, Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡΡΠ΅Π΅ ΠΏΠΎΡΠ»Π΅ Π²Π²Π΅Π΄Π΅Π½ΠΈΡ ΡΠΎΠΊΡΠΈΡΠ΅ΡΠΊΠΈΡ
Π΄ΠΎΠ· Π°Π΄ΡΠ΅Π½Π°Π»ΠΈΠ½Π°, Π±ΡΠ»ΠΎ ΡΠΎΡΡΠ΅Π΄ΠΎΡΠΎΡΠ΅Π½ΠΎ Π²ΠΎΠΊΡΡΠ³ Π°ΡΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΡ
ΡΠΎΡΡΠ΄ΠΎΠ², ΡΡΠΎ Π² ΠΏΠΎΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΠ»ΠΎ ΠΊ ΠΏΠ΅ΡΠΈΠ°ΡΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΠΏΡΠΎΠ»ΠΈΡΠ΅ΡΠ°ΡΠΈΠΈ ΡΠΈΠ±ΡΠΎΠ±Π»Π°ΡΡΠΎΠ² ΠΈ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π³ΡΠ°Π½ΡΠ»ΡΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠΊΠ°Π½ΠΈ.ΠΠ»Ρ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠ·ΡΠΌΡΠ½Π½Ρ ΠΏΠ°ΡΠΎΠ³Π΅Π½Π΅ΡΠΈΡΠ½ΠΈΡ
ΠΌΠ΅Ρ
Π°Π½ΡΠ·ΠΌΡΠ² Π½Π΅ΠΊΡΠΎΠ·Ρ ΠΌΡΠΎΠΊΠ°ΡΠ΄Π°, ΡΠΎΠ·ΡΠΎΠ±ΠΊΠΈ ΠΌΠ΅ΡΠΎΠ΄ΡΠ² ΠΏΡΠΎΡΡΠ»Π°ΠΊΡΠΈΠΊΠΈ Ρ Π»ΡΠΊΡΠ²Π°Π½Π½Ρ Π½Π΅ΠΎΠ±Ρ
ΡΠ΄Π½Π΅ ΠΉΠΎΠ³ΠΎ Π΅ΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½Π΅ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½Ρ Π½Π° ΡΡΠ·Π½ΠΈΡ
ΠΌΠΎΠ΄Π΅Π»ΡΡ
. Π£ ΡΡΠ°ΡΡΡ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Π° Π΄ΠΈΠ½Π°ΠΌΡΠΊΠ° ΠΌΠΎΡΡΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΈΡ
Π·ΠΌΡΠ½ Ρ ΠΌΡΠΎΠΊΠ°ΡΠ΄Ρ ΠΏΡΡΠ»Ρ ΠΊΡΡΠΎΠ²ΡΡΡΡΠ°Π½Π½Ρ Π½Π° ΡΠ΅ΡΡΡ ΠΏΡΠΎΡΡΠ³ΠΎΠΌ 15 Ρ 30 Ρ, ΠΏΠ΅ΡΠ΅Π²'ΡΠ·ΠΊΠΈ Π»ΡΠ²ΠΎΡ ΠΊΠΎΡΠΎΠ½Π°ΡΠ½ΠΎΡ Π°ΡΡΠ΅ΡΡΡ Ρ Π²Π²Π΅Π΄Π΅Π½Π½Ρ ΡΠΎΠΊΡΠΈΡΠ½ΠΈΡ
Π΄ΠΎΠ· Π°Π΄ΡΠ΅Π½Π°Π»ΡΠ½Ρ. ΠΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΠΎ ΠΊΡΡΠΎΠ²ΡΡΡΡΠ°Π½Π½Ρ Π½Π° ΡΠ΅ΡΡΡ ΠΏΡΠΈΠ·Π²ΠΎΠ΄ΠΈΠ»ΠΎ Π΄ΠΎ ΠΏΠΎΡΠ²ΠΈ Π½Π΅ΠΊΡΠΎΡΠΈΡΠ½ΠΎΡ Π·ΠΎΠ½ΠΈ Π² ΠΌΡΠΎΠΊΠ°ΡΠ΄Ρ Π±Π΅Π· ΡΡΠ΅ΠΌΡΡΠ½ΠΎΡ ΡΠ°Π·ΠΈ Π·Π°ΠΏΠ°Π»Π΅Π½Π½Ρ, ΠΏΡΠΈ ΡΡΠΎΠΌΡ Π³Π»ΠΈΠ±ΠΈΠ½Π° ΡΡΠ°ΠΆΠ΅Π½Π½Ρ ΡΠ΅ΡΡΠ΅Π²ΠΎΠ³ΠΎ ΠΌ'ΡΠ·Π° Π±Π΅Π·ΠΏΠΎΡΠ΅ΡΠ΅Π΄Π½ΡΠΎ Π·Π°Π»Π΅ΠΆΠ°Π»Π° Π²ΡΠ΄ ΡΡΠΈΠ²Π°Π»ΠΎΡΡΡ ΠΊΡΡΠΎΠ²ΡΡΡΡΠ°Π½Π½Ρ. ΠΠ΅ΡΠ΅Π²'ΡΠ·ΠΊΠ° ΠΊΠΎΡΠΎΠ½Π°ΡΠ½ΠΎΡ Π°ΡΡΠ΅ΡΡΡ ΡΠΏΡΠΈΡΠ»Π° ΡΠΎΡΠΌΡΠ²Π°Π½Π½Ρ ΡΡΠ΅ΠΌΡΡΠ½ΠΎΠ³ΠΎ Π½Π΅ΠΊΡΠΎΠ·Ρ ΠΌΡΠΎΠΊΠ°ΡΠ΄Π° Π² Π·ΠΎΠ½Ρ Π±Π°ΡΠ΅ΠΉΠ½Ρ Π»ΡΠ³ΠΎΠ²Π°Π½ΠΎΡ ΡΡΠ΄ΠΈΠ½ΠΈ Π· ΡΡΠΊΡΠ°Π²ΠΎ Π²ΠΈΡΠ°ΠΆΠ΅Π½ΠΈΠΌΠΈ Π΄ΡΡΡΠΈΡΠΊΡΠ»ΡΡΠΎΡΠ½ΠΈΠΌΠΈ ΠΏΠΎΡΡΡΠ΅Π½Π½ΡΠΌΠΈ. ΠΠΎΠ³Π½Π΅ΡΠ΅Π²Π΅ ΡΡΠ°ΠΆΠ΅Π½Π½Ρ ΠΌΡΠΎΠΊΠ°ΡΠ΄Π°, ΡΠΎ Π²ΠΈΠ½ΠΈΠΊΠ°Ρ ΠΏΡΡΠ»Ρ Π²Π²Π΅Π΄Π΅Π½Π½Ρ ΡΠΎΠΊΡΠΈΡΠ½ΠΈΡ
Π΄ΠΎΠ· Π°Π΄ΡΠ΅Π½Π°Π»ΡΠ½Ρ, Π±ΡΠ»ΠΎ Π·ΠΎΡΠ΅ΡΠ΅Π΄ΠΆΠ΅Π½ΠΎ Π½Π°Π²ΠΊΠΎΠ»ΠΎ Π°ΡΡΠ΅ΡΡΠ°Π»ΡΠ½ΠΈΡ
ΡΡΠ΄ΠΈΠ½, ΡΠΎ ΠΏΡΠΈΠ·Π²ΠΎΠ΄ΠΈΠ»ΠΎ Π΄ΠΎ ΠΏΠ΅ΡΡΠ°ΡΡΠ΅ΡΡΠ°Π»ΡΠ½ΠΎΡ ΠΏΡΠΎΠ»ΡΡΠ΅ΡΠ°ΡΡΡ ΡΡΠ±ΡΠΎΠ±Π»Π°ΡΡΡΠ² Ρ ΡΠΎΡΠΌΡΠ²Π°Π½Π½Ρ Π³ΡΠ°Π½ΡΠ»ΡΡΡΠΉΠ½ΠΎΡ ΡΠΊΠ°Π½ΠΈΠ½ΠΈ