10 research outputs found

    A teleoperated system for remote site characterization

    Get PDF
    The detection and characterization of buried objects and materials is an important step in the restoration of burial sites containing chemical and radioactive waste materials at Department of Energy (DOE) and Department of Defense (DOD) facilities. By performing these tasks with remotely controlled sensors, it is possible to obtain improved data quality and consistency as well as enhanced safety for on-site workers. Therefore, the DOE Office of Technology Development and the US Army Environmental Center have jointly supported the development of the Remote Characterization System (RCS). One of the main components of the RCS is a small remotely driven survey vehicle that can transport various combinations of geophysical and radiological sensors. Currently implemented sensors include ground-penetrating radar, magnetometers, an electromagnetic induction sensor, and a sodium iodide radiation detector. The survey vehicle was constructed predominantly of non-metallic materials to minimize its effect on the operation of its geophysical sensors. The system operator controls the vehicle from a remote, truck-mounted, base station. Video images are transmitted to the base station by a radio link to give the operator necessary visual information. Vehicle control commands, tracking information, and sensor data are transmitted between the survey vehicle and the base station by means of a radio ethernet link. Precise vehicle tracking coordinates are provided by a differential Global Positioning System (GPS)

    Analysis of International Commodity Shipping Data and the Shipment of NORM to the United States

    Full text link
    As part of the Spreader Bar Radiation Detector project, PNNL analyzed US import data shipped through US ports collected over the 12 months of 2006 (over 4.5 million containers). Using these data, we extracted a variety of distributions that are of interest to modelers and developers of active and passive detection systems used to 'scan' IMCCs for potential contraband. This report expands on some of the analysis presented in an earlier report from LLNL, by investigation the foreign port distribution of commodities shipped to the US. The majority of containers shipped to the United States are 40 ft containers ({approx}70%); about 25% are 20 ft; and about 3.6% are 45 ft containers. A small fraction (<1%) of containers are of other more specialized sizes, and very few ports actually ship these unique size containers (a full distribution for all foreign ports is shown in Appendix A below). The primary foreign ports that ship the largest fraction of each container are shown in the table below. Given that 45 ft containers comprise 1 of out every 27 containers shipped to the US, and given the foreign ports from which they are shipped, they should not be ignored in screening; further testing and analysis of radiation measurements for national security with this size container is warranted. While a large amount of NORM is shipped in IMCCs, only a few specific commodities are shipped with enough frequency to present potential issues in screening IMCCs at ports. The majority of containers with NORM will contain fertilizers (5,700 containers), granite (59,000 containers), or ceramic (225,000 containers) materials. Fertilizers were generally shipping in either 20- or 40 ft containers with equal frequency. While granite is mostly shipped in 20 ft containers, ceramic materials can be shipped in either 20- or 40 ft containers. The size of container depended on the specific use of the ceramic or porcelain material. General construction ceramics (such as floor and roofing tiles) tend to be shipped in 20 ft containers. Consumer products made from ceramic materials (e.g., tableware, sinks, and toilets) are generally shipped in 40 ft containers. This distinct discrepancy is due in large part to the packaging of the commodity. Consumer products are generally shipped packed in a box loaded with Styrofoam or other packing material to protect the product from breakage. Construction ceramic materials are generally shipped in less packing material, many times consisting of only a cardboard or wooden box. Granite is almost always shipped in a 20 ft container, given its very high density

    Eddy Current Imaging of Machined Grooves on a Nickel Wave Strip

    No full text
    White paper proposal to client at Y-12 for eddy current inspectio

    Distributed data analysis in a mobile real time and minicomputer network environment

    No full text
    The system design and analysis processes involved in collecting data from a mobile laboratory to a finished analysis are presented. This involves real-time data collection on a small mobile cart, an intermediate analysis station in a nearby mobile van, and the final analysis performed through a minicomputer network of facilities. An iterative approach to data collection and review was established to provide timely analysis and verification of incoming data. This requires a highly interactive user-oriented environment in the field. After the data have been collected and preliminary analysis has been completed, the results can be integrated into a larger analysis system through a minicomputer network. This procedure also allows for utilization of high-cost equipment that cannot be placed in the field. A single hardware interface, BATNET (Battelle Network), is used to perform all data transfers via either radio (cart-to-van) or external network connections (van-to-computer network). The key software components described are a self-describing data base system utilizing simple relational data base concepts, a simple command language allowing analysis and investigation in the field, and a simple preview system for intensity-modulated data. 2 figures

    Algorithms Performance Investigation of a Generalized Spreader-Bar Detection System

    No full text
    A “generic” gantry-crane-mounted spreader bar detector has been simulated in the Monte-Carlo radiation transport code MCNP [1]. This model is intended to represent the largest realistically feasible number of detector crystals in a single gantry-crane model intended to sit atop an InterModal Cargo Container (IMCC). Detectors were chosen from among large commonly-available sodium iodide (NaI) crystal scintillators and spaced as evenly as is thought possible with a detector apparatus attached to a gantry crane. Several scenarios were simulated with this model, based on a single IMCC being moved between a ship’s deck or cargo hold and the dock. During measurement, the gantry crane will carry that IMCC through the air and lower it onto a receiving vehicle (e.g. a chassis or a bomb cart). The case of an IMCC being moved through the air from an unknown radiological environment to the ground is somewhat complex; for this initial study a single location was picked at which to simulate background. An HEU source based on earlier validated models was used, and placed at varying depths in a wood cargo. Many statistical realizations of these scenarios are constructed from simulations of the component spectra, simulated to have high statistics. The resultant data are analyzed with several different algorithms. The simulated data were evaluated by each algorithm, with a threshold set to a statistical-only false alarm probability of 0.001 and the resultant Minimum Detectable Amounts were generated for each Cargo depth possible within the IMCC. Using GADRAS as an anomaly detector provided the greatest detection sensitivity, and it is expected that an algorithm similar to this will be of great use to the detection of highly shielded sources

    Spreader-Bar Radiation Detection System Enhancements: A Modeling and Simulation Study

    No full text
    This report provides the modeling and simulation results of the investigation of enhanced spreader bar radiation detection systems
    corecore