53 research outputs found

    Estimating the opportunity costs of bed-days.

    Get PDF
    Opportunity costs of bed-days are fundamental to understanding the value of healthcare systems. They greatly influence burden of disease estimations and economic evaluations involving stays in healthcare facilities. However, different estimation techniques employ assumptions that differ crucially in whether to consider the value of the second-best alternative use forgone, of any available alternative use, or the value of the actually chosen alternative. Informed by economic theory, this paper provides a taxonomic framework of methodologies for estimating the opportunity costs of resources. This taxonomy is then applied to bed-days by classifying existing approaches accordingly. We highlight differences in valuation between approaches and the perspective adopted, and we use our framework to appraise the assumptions and biases underlying the standard approaches that have been widely adopted mostly unquestioned in the past, such as the conventional use of reference costs and administrative accounting data. Drawing on these findings, we present a novel approach for estimating the opportunity costs of bed-days in terms of health forgone for the second-best patient, but expressed monetarily. This alternative approach effectively re-connects to the concept of choice and explicitly considers net benefits. It is broadly applicable across settings and for other resources besides bed-days

    Should NICE reconsider the 2016 UK guidelines on TB contact tracing? A cost-effectiveness analysis of contact investigations in London.

    Get PDF
    BACKGROUND: In January 2016, clinical TB guidance in the UK changed to no longer recommend screening contacts of non-pulmonary, non-laryngeal (ETB) index cases. However, no new evidence was cited for this change, and there is evidence that screening these contacts may be worthwhile. The objective of this study was to estimate the cost-effectiveness of screening contacts of adult ETB cases and adult pulmonary or laryngeal TB (PTB) cases in London, UK. METHODS: We carried out a cross-sectional analysis of data collected on TB index cases and contacts in the London TB register and an economic evaluation using a static model describing contact tracing outcomes. Incremental cost-effectiveness ratios (ICERs) were calculated using no screening as the baseline comparator. All adult TB cases (≥15 years old) in London from 2012 to 2015, and their contacts, were eligible (2465/5084 PTB and 2559/6090 ETB index cases were included). RESULTS: Assuming each contact with PTB infects one person/month, the ICER of screening contacts of ETB cases was £78 000/quality-adjusted life-years (QALY) (95% CI 39 000 to 140 000), and screening contacts of PTB cases was £30 000/QALY (95% CI 18 000 to 50 000). The ICER of screening contacts of ETB cases was £30 000/QALY if each contact with PTB infects 3.4 people/month. Limitations of this study include the use of self-reported symptomatic periods and lack of knowledge about onward transmission from PTB contacts. CONCLUSIONS: Screening contacts of ETB cases in London was almost certainly not cost-effective at any conventional willingness-to-pay threshold in England, supporting recent changes to National Institute for Health and Care Excellence national guidelines

    Time use and social mixing during and around festive periods: Potential changes in the age distribution of COVID-19 cases from increased intergenerational interactions

    Get PDF
    AbstractRationaleAmid the ongoing coronavirus disease 2019 (COVID-19) pandemic in which many countries have adopted physical distancing measures, tiered restrictions, and episodic “lockdowns,” the impact of potentially increased social mixing during festive holidays on the age distribution of new COVID-19 cases remains unclear.ObjectiveWe aimed to gain insights into possible changes in the age distribution of COVID-19 cases in the UK after temporarily increased intergenerational interactions in late December 2020.MethodWe modelled changes in time use and social mixing based on age-stratified contact rates using historical nationally-representative surveys and up-to-date Google mobility data from four weeks before and after the festive period. We explored changes in the effective reproduction number and the age distribution of cases, in four scenarios: (1) “normal”: time use and contact patterns as observed historically, (2) “pre-lockdown”: patterns as seen before the lockdown in November 2020, (3) “lockdown”: patterns restricted as in November 2020, and (4) “festive break”: similar to 3 but with social visits over the holiday period as in 1.ResultsAcross ages, the estimated Reff decreases during the festive break in scenarios 1-3 and returns to pre-holiday levels in scenarios 2-3, while remaining relatively stable in scenario 4. Relative incidence is likely to decrease in children aged 0-15 but increase in other ages. Changes in age distribution were large during the holidays, and are likely to start before the holidays for individuals aged 16-24 years in scenarios 1-3.ConclusionsOur modelling findings suggest that increased contacts during the festive period may shift the age distribution of COVID-19 cases from children towards adults. Given that COVID-19-related hospitalisations and deaths rise by age, more intergenerational mixing risks an increased burden in the period following the holidays.HighlightsHome visits are associated with increased intergenerational mixing.The effective reproduction number is likely to remain stable or even reduce slightly due to a reduction in contacts at work and school.Relative incidence is likely to become lower in children, but higher in theolder (more vulnerable) age groups around the holiday period, which could lead to increased health care burden.</jats:sec

    Estimating the Hospital Burden of Norovirus-Associated Gastroenteritis in England and Its Opportunity Costs for Nonadmitted Patients.

    Get PDF
    Background: Norovirus places a substantial burden on healthcare systems, arising from infected patients, disease outbreaks, beds kept unoccupied for infection control, and staff absences due to infection. In settings with high rates of bed occupancy, opportunity costs arise from patients who cannot be admitted due to beds being unavailable. With several treatments and vaccines against norovirus in development, quantifying the expected economic burden is timely. Methods: The number of inpatients with norovirus-associated gastroenteritis in England was modeled using infectious and noninfectious gastrointestinal Hospital Episode Statistics codes and laboratory reports of gastrointestinal pathogens collected at Public Health England. The excess length of stay from norovirus was estimated with a multistate model and local outbreak data. Unoccupied bed-days and staff absences were estimated from national outbreak surveillance. The burden was valued conventionally using accounting expenditures and wages, which we contrasted to the opportunity costs from forgone patients using a novel methodology. Results: Between July 2013 and June 2016, 17.7% (95% confidence interval [CI], 15.6%‒21.6%) of primary and 23.8% (95% CI, 20.6%‒29.9%) of secondary gastrointestinal diagnoses were norovirus attributable. Annually, the estimated median 290000 (interquartile range, 282000‒297000) occupied and unoccupied bed-days used for norovirus displaced 57800 patients. Conventional costs for the National Health Service reached £107.6 million; the economic burden approximated to £297.7 million and a loss of 6300 quality-adjusted life-years annually. Conclusions: In England, norovirus is now the second-largest contributor of the gastrointestinal hospital burden. With the projected impact being greater than previously estimated, improved capture of relevant opportunity costs seems imperative for diseases such as norovirus

    Estimation of input costs for a Markov model in a German health economic evaluation of newer antidepressants

    Get PDF
    Background: Estimating input costs for Markov models in health economic evaluations requires health state-specific costing. This is a challenge in mental illnesses such as depression, as interventions are not clearly related to health states. We present a hybrid approach to health state-specific cost estimation for a German health economic evaluation of antidepressants. Methods: Costs were determined from the perspective of the community of persons insured by statutory health insurance (“SHI insuree perspective”) and included costs for outpatient care, inpatient care, drugs, and psychotherapy. In an additional step, costs for rehabilitation and productivity losses were calculated from the societal perspective. We collected resource use data in a stepwise hierarchical approach using SHI claims data, where available, followed by data from clinical guidelines and expert surveys. Bottom-up and top-down costing approaches were combined. Results: Depending on the drug strategy and health state, the average input costs varied per patient per 8-week Markov cycle. The highest costs occurred for agomelatine in the health state first-line treatment (FT) (“FT relapse”) with €506 from the SHI insuree perspective and €724 from the societal perspective. From both perspectives, the lowest costs (excluding placebo) were €55 for selective serotonin reuptake inhibitors in the health state “FT remission.” Conclusion: To estimate costs in health economic evaluations of treatments for depression, it can be necessary to link different data sources and costing approaches systematically to meet the requirements of the decision-analytic model. As this can increase complexity, the corresponding calculations should be presented transparently. The approach presented could provide useful input for future models

    The potential health and economic value of SARS-CoV-2 vaccination alongside physical distancing in the UK: a transmission model-based future scenario analysis and economic evaluation.

    Get PDF
    BACKGROUND: In response to the COVID-19 pandemic, the UK first adopted physical distancing measures in March, 2020. Vaccines against SARS-CoV-2 became available in December, 2020. We explored the health and economic value of introducing SARS-CoV-2 immunisation alongside physical distancing in the UK to gain insights about possible future scenarios in a post-vaccination era. METHODS: We used an age-structured dynamic transmission and economic model to explore different scenarios of UK mass immunisation programmes over 10 years. We compared vaccinating 75% of individuals aged 15 years or older (and annually revaccinating 50% of individuals aged 15-64 years and 75% of individuals aged 65 years or older) to no vaccination. We assumed either 50% vaccine efficacy against disease and 45-week protection (worst-case scenario) or 95% vaccine efficacy against infection and 3-year protection (best-case scenario). Natural immunity was assumed to wane within 45 weeks. We also explored the additional impact of physical distancing on vaccination by assuming either an initial lockdown followed by voluntary physical distancing, or an initial lockdown followed by increased physical distancing mandated above a certain threshold of incident daily infections. We considered benefits in terms of quality-adjusted life-years (QALYs) and costs, both to the health-care payer and the national economy. We discounted future costs and QALYs at 3·5% annually and assumed a monetary value per QALY of £20 000 and a conservative long-run cost per vaccine dose of £15. We explored and varied these parameters in sensitivity analyses. We expressed the health and economic benefits of each scenario with the net monetary value: QALYs × (monetary value per QALY) - costs. FINDINGS: Without the initial lockdown, vaccination, and increased physical distancing, we estimated 148·0 million (95% uncertainty interval 48·5-198·8) COVID-19 cases and 3·1 million (0·84-4·5) deaths would occur in the UK over 10 years. In the best-case scenario, vaccination minimises community transmission without future periods of increased physical distancing, whereas SARS-CoV-2 becomes endemic with biannual epidemics in the worst-case scenario. Ongoing transmission is also expected in intermediate scenarios with vaccine efficacy similar to published clinical trial data. From a health-care perspective, introducing vaccination leads to incremental net monetary values ranging from £12·0 billion to £334·7 billion in the best-case scenario and from -£1·1 billion to £56·9 billion in the worst-case scenario. Incremental net monetary values of increased physical distancing might be negative from a societal perspective if national economy losses are persistent and large. INTERPRETATION: Our model findings highlight the substantial health and economic value of introducing SARS-CoV-2 vaccination. Smaller outbreaks could continue even with vaccines, but population-wide implementation of increased physical distancing might no longer be justifiable. Our study provides early insights about possible future post-vaccination scenarios from an economic and epidemiological perspective. FUNDING: National Institute for Health Research, European Commission, Bill & Melinda Gates Foundation

    Optimising health and economic impacts of COVID-19 vaccine prioritisation strategies in the WHO European Region: a mathematical modelling study.

    Get PDF
    BACKGROUND: Countries in the World Health Organization (WHO) European Region differ in terms of the COVID-19 vaccine supply conditions. We evaluated the health and economic impact of different age-based vaccine prioritisation strategies across this demographically and socio-economically diverse region. METHODS: We fitted age-specific compartmental models to the reported daily COVID-19 mortality in 2020 to inform the immunity level before vaccine roll-out. Models capture country-specific differences in population structures, contact patterns, epidemic history, life expectancy, and GDP per capita.We examined four strategies that prioritise: all adults (V+), younger (20-59 year-olds) followed by older adults (60+) (V20), older followed by younger adults (V60), and the oldest adults (75+) (V75) followed by incrementally younger age groups. We explored four roll-out scenarios (R1-4) - the slowest scenario (R1) reached 30% coverage by December 2022 and the fastest (R4) 80% by December 2021. Five decision-making metrics were summarised over 2021-22: mortality, morbidity, and losses in comorbidity-adjusted life expectancy, comorbidity- and quality-adjusted life years, and human capital. Six vaccine profiles were tested - the highest performing vaccine has 95% efficacy against both infection and disease, and the lowest 50% against diseases and 0% against infection. FINDINGS: Of the 20 decision-making metrics and roll-out scenario combinations, the same optimal strategy applied to all countries in only one combination; V60 was more or similarly desirable than V75 in 19 combinations. Of the 38 countries with fitted models, 11-37 countries had variable optimal strategies by decision-making metrics or roll-out scenarios. There are greater benefits in prioritising older adults when roll-out is slow and when vaccine profiles are less favourable. INTERPRETATION: The optimal age-based vaccine prioritisation strategies were sensitive to country characteristics, decision-making metrics, and roll-out speeds. A prioritisation strategy involving more age-based stages (V75) does not necessarily lead to better health and economic outcomes than targeting broad age groups (V60). Countries expecting a slow vaccine roll-out may particularly benefit from prioritising older adults. FUNDING: World Health Organization, Bill and Melinda Gates Foundation, the Medical Research Council (United Kingdom), the National Institute of Health Research (United Kingdom), the European Commission, the Foreign, Commonwealth and Development Office (United Kingdom), Wellcome Trust

    Optimising health and economic impacts of COVID-19 vaccine prioritisation strategies in the WHO European Region.

    Get PDF
    BACKGROUND: Countries in the World Health Organization (WHO) European Region differ in terms of the COVID-19 vaccine roll-out speed. We evaluated the health and economic impact of different age-based vaccine prioritisation strategies across this demographically and socio-economically diverse region. METHODS: We fitted country-specific age-stratified compartmental transmission models to reported COVID-19 mortality in the WHO European Region to inform the immunity level before vaccine roll-out. Building upon broad recommendations from the WHO Strategic Advisory Group of Experts on Immunisation (SAGE), we examined four strategies that prioritise: all adults (V+), younger (20-59 year-olds) followed by older adults (60+) (V20), older followed by younger adults (V60), and the oldest adults (75+) (V75) followed by incremental expansion to successively younger five-year age groups. We explored four roll-out scenarios based on projections or recent observations (R1-4) - the slowest scenario (R1) covers 30% of the total population by December 2022 and the fastest (R4) 80% by December 2021. Five decision-making metrics were summarised over 2021-22: mortality, morbidity, and losses in comorbidity-adjusted life expectancy (cLE), comorbidity- and quality-adjusted life years (cQALY), and the value of human capital (HC). Six sets of infection-blocking and disease-reducing vaccine efficacies were considered. FINDINGS: The optimal age-based vaccine prioritisation strategies were sensitive to country characteristics, decision-making metrics and roll-out speeds. Overall, V60 consistently performed better than or comparably to V75. There were greater benefits in prioritising older adults when roll-out is slow and when VE is low. Under faster roll-out, V+ was the most desirable option. INTERPRETATION: A prioritisation strategy involving more age-based stages (V75) does not necessarily lead to better health and economic outcomes than targeting broad age groups (V60). Countries expecting a slow vaccine roll-out may particularly benefit from prioritising older adults. FUNDING: World Health Organization, Bill and Melinda Gates Foundation, the Medical Research Council (United Kingdom), the National Institute of Health Research (United Kingdom), the European Commission, the Foreign, Commonwealth and Development Office (United Kingdom), Wellcome Trust. RESEARCH IN CONTEXT: Evidence before this study: We searched PubMed and medRxiv for articles published in English from inception to 9 Jun 2021, with the search terms: ("COVID-19" OR "SARS-CoV-2") AND ("priorit*) AND ("model*") AND ("vaccin*") and identified 66 studies on vaccine prioritization strategies. Of the 25 studies that compared two or more age-based prioritisation strategies, 12 found that targeting younger adults minimised infections while targeting older adults minimised mortality; an additional handful of studies found similar outcomes between different age-based prioritisation strategies where large outbreaks had already occurred. However, only two studies have explored age-based vaccine prioritisation using models calibrated to observed outbreaks in more than one country, and no study has explored the effectiveness of vaccine prioritisation strategies across settings with different population structures, contact patterns, and outbreak history.Added-value of this study: We evaluated various age-based vaccine prioritisation strategies for 38 countries in the WHO European Region using various health and economic outcomes for decision-making, by parameterising models using observed outbreak history, known epidemiologic and vaccine characteristics, and a range of realistic vaccine roll-out scenarios. We showed that while targeting older adults was generally advantageous, broadly targeting everyone above 60 years might perform better than or comparably to a more detailed strategy that targeted the oldest age group above 75 years followed by those in the next younger five-year age band. Rapid vaccine roll-out has only been observed in a small number of countries. If vaccine coverage can reach 80% by the end of 2021, prioritising older adults may not be optimal in terms of health and economic impact. Lower vaccine efficacy was associated with greater relative benefits only under relatively slow roll-out scenarios considered.Implication of all the available evidence: COVID-19 vaccine prioritization strategies that require more precise targeting of individuals of a specific and narrow age range may not necessarily lead to better outcomes compared to strategies that prioritise populations across broader age ranges. In the WHO European Region, prioritising all adults equally or younger adults first will only optimise health and economic impact when roll-out is rapid, which may raise between-country equity issues given the global demand for COVID-19 vaccines
    corecore