953 research outputs found
The evolution of planetary nebulae VII. Modelling planetary nebulae of distant stellar systems
By means of hydrodynamical models we do the first investigations of how the
properties of planetary nebulae are affected by their metal content and what
can be learned from spatially unresolved spectrograms of planetary nebulae in
distant stellar systems. We computed a new series of 1D radiation-hydrodynamics
planetary nebulae model sequences with central stars of 0.595 M_sun surrounded
by initial envelope structures that differ only by their metal content. At
selected phases along the evolutionary path, the hydrodynamic terms were
switched off, allowing the models to relax for fixed radial structure and
radiation field into their equilibrium state with respect to energy and
ionisation. The analyses of the line spectra emitted from both the dynamical
and static models enabled us to systematically study the influence of
hydrodynamics as a function of metallicity and evolution. We also recomputed
selected sequences already used in previous publications, but now with
different metal abundances. These sequences were used to study the expansion
properties of planetary nebulae close to the bright cut-off of the planetary
nebula luminosity function. Our simulations show that the metal content
strongly influences the expansion of planetary nebulae: the lower the metal
content, the weaker the pressure of the stellar wind bubble, but the faster the
expansion of the outer shell because of the higher electron temperature. This
is in variance with the predictions of the interacting-stellar-winds model (or
its variants) according to which only the central-star wind is thought to be
responsible for driving the expansion of a planetary nebula. Metal-poor objects
around slowly evolving central stars become very dilute and are prone to depart
from thermal equilibrium because then adiabatic expansion contributes to gas
cooling. ...abridged abstract.Comment: 35 pages, 43 figures, accepted for publication by A&
The initial singularity of ultrastiff perfect fluid spacetimes without symmetries
We consider the Einstein equations coupled to an ultrastiff perfect fluid and
prove the existence of a family of solutions with an initial singularity whose
structure is that of explicit isotropic models. This family of solutions is
`generic' in the sense that it depends on as many free functions as a general
solution, i.e., without imposing any symmetry assumptions, of the
Einstein-Euler equations. The method we use is a that of a Fuchsian reduction.Comment: 16 pages, journal versio
Weak magnetic fields in central stars of planetary nebulae?
It is not yet clear whether magnetic fields play an essential role in shaping
planetary nebulae (PNe), or whether stellar rotation alone and/or a close
binary companion can account for the variety of the observed nebular
morphologies. In a quest for empirical evidence verifying or disproving the
role of magnetic fields in shaping PNe, we follow up on previous attempts to
measure the magnetic field in a representative sample of PN central stars. We
obtained low-resolution polarimetric spectra with FORS 2 at VLT for a sample of
twelve bright central stars of PNe with different morphology, including two
round nebulae, seven elliptical nebulae, and three bipolar nebulae. Two targets
are Wolf-Rayet type central stars. For the majority of the observed central
stars, we do not find any significant evidence for the existence of surface
magnetic fields. However, our measurements may indicate the presence of weak
mean longitudinal magnetic fields of the order of 100 Gauss in the central star
of the young elliptical planetary nebula IC 418, as well as in the Wolf-Rayet
type central star of the bipolar nebula Hen2-113 and the weak emission line
central star of the elliptical nebula Hen2-131. A clear detection of a 250 G
mean longitudinal field is achieved for the A-type companion of the central
star of NGC 1514. Some of the central stars show a moderate night-to-night
spectrum variability, which may be the signature of a variable stellar wind
and/or rotational modulation due to magnetic features. We conclude that strong
magnetic fields of the order of kG are not widespread among PNe central stars.
Nevertheless, simple estimates based on a theoretical model of magnetized wind
bubbles suggest that even weak magnetic fields below the current detection
limit of the order of 100 G may well be sufficient to contribute to the shaping
of PNe throughout their evolution.Comment: 16 pages, 11 figures, 3 tables, accepted for publication in A&A;
References updated, minor correction
A comparative analysis reveals weak relationships between ecological factors and beta diversity of stream insect metacommunities at two spatial levels
The hypotheses that beta diversity should increase with decreasing latitude and increase with spatial extent of a region have rarely been tested based on a comparative analysis of multiple datasets, and no such study has focused on stream insects. We first assessed how well variability in beta diversity of stream insect metacommunities is predicted by insect group, latitude, spatial extent, altitudinal range, and dataset properties across multiple drainage basins throughout the world. Second, we assessed the relative roles of environmental and spatial factors in driving variation in assemblage composition within each drainage basin. Our analyses were based on a dataset of 95 stream insect metacommunities from 31 drainage basins distributed around the world. We used dissimilarity-based indices to quantify beta diversity for each metacommunity and, subsequently, regressed beta diversity on insect group, latitude, spatial extent, altitudinal range, and dataset properties (e.g., number of sites and percentage of presences). Within each metacommunity, we used a combination of spatial eigenfunction analyses and partial redundancy analysis to partition variation in assemblage structure into environmental, shared, spatial, and unexplained fractions. We found that dataset properties were more important predictors of beta diversity than ecological and geographical factors across multiple drainage basins. In the within-basin analyses, environmental and spatial variables were generally poor predictors of variation in assemblage composition. Our results revealed deviation from general biodiversity patterns because beta diversity did not show the expected decreasing trend with latitude. Our results also call for reconsideration of just how predictable stream assemblages are along ecological gradients, with implications for environmental assessment and conservation decisions. Our findings may also be applicable to other dynamic systems where predictability is low
Reef Fish Survey Techniques:Assessing the Potential for Standardizing Methodologies
Dramatic changes in populations of fishes living on coral reefs have been documented globally and, in response, the research community has initiated efforts to assess and monitor reef fish assemblages. A variety of visual census techniques are employed, however results are often incomparable due to differential methodological performance. Although comparability of data may promote improved assessment of fish populations, and thus management of often critically important nearshore fisheries, to date no standardized and agreed-upon survey method has emerged. This study describes the use of methods across the research community and identifies potential drivers of method selection. An online survey was distributed to researchers from academic, governmental, and non-governmental organizations internationally. Although many methods were identified, 89% of survey-based projects employed one of three methods-belt transect, stationary point count, and some variation of the timed swim method. The selection of survey method was independent of the research design (i.e., assessment goal) and region of study, but was related to the researcher's home institution. While some researchers expressed willingness to modify their current survey protocols to more standardized protocols (76%), their willingness decreased when methodologies were tied to long-term datasets spanning five or more years. Willingness to modify current methodologies was also less common among academic researchers than resource managers. By understanding both the current application of methods and the reported motivations for method selection, we hope to focus discussions towards increasing the comparability of quantitative reef fish survey data
Equation of state at high densities and modern compact star observations
Recently, observations of compact stars have provided new data of high
accuracy which put strong constraints on the high-density behaviour of the
equation of state of strongly interacting matter otherwise not accessible in
terrestrial laboratories. The evidence for neutron stars with high mass (M =2.1
+/- 0.2 M_sun for PSR J0751+1807) and large radii (R > 12 km for RX J1856-3754)
rules out soft equations of state and has provoked a debate whether the
occurence of quark matter in compact stars can be excluded as well. In this
contribution it is shown that modern quantum field theoretical approaches to
quark matter including color superconductivity and a vector meanfield allow a
microscopic description of hybrid stars which fulfill the new, strong
constraints. The deconfinement transition in the resulting stiff hybrid
equation of state is weakly first order so that signals of it have to be
expected due to specific changes in transport properties governing the
rotational and cooling evolution caused by the color superconductivity of quark
matter. A similar conclusion holds for the investigation of quark deconfinement
in future generations of nucleus-nucleus collision experiments at low
temperatures and high baryon densities such as CBM @ FAIR.Comment: 6 pages, 2 figures, accepted for publication in J. Phys. G. (Special
Issue
3.9 angstrom structure of the nucleosome core particle determined by phase-plate cryo-EM
The Volta phase plate is a recently developed electron cryo-microscopy (cryo-EM) device that enables contrast enhancement of biological samples. Here we have evaluated the potential of combining phase-plate imaging and single particle analysis to determine the structure of a small protein-DNA complex. To test the method, we made use of a 200 kDa Nucleosome Core Particle (NCP) reconstituted with 601 DNA for which a high-resolution X-ray crystal structure is known. We find that the phase plate provides a significant contrast enhancement that permits individual NCPs and DNA to be clearly identified in amorphous ice. The refined structure from 26,060 particles has an overall resolution of 3.9 angstrom and the density map exhibits structural features consistent with the estimated resolution, including clear density for amino acid side chains and DNA features such as the phosphate backbone. Our results demonstrate that phase-plate cryo-EM promises to become an important method to determine novel near-atomic resolution structures of small and challenging samples, such as nucleosomes in complex with nucleosome-binding factors
Differences in reef fish assemblages between populated and remote reefs spanning multiple archipelagos across the central and western Pacific
Comparable information on the status of natural resources across large geographic and human impact scales provides invaluable context to ecosystem-based management and insights into processes driving differences among areas. Data on fish assemblages at 39 US flag coral reef-areas distributed across the Pacific are presented. Total reef fish biomass varied by more than an order of magnitude: lowest at densely-populated islands and highest on reefs distant from human populations. Remote reefs (<50 people within 100 km) averaged ~4 times the biomass of “all fishes” and 15 times the biomass of piscivores compared to reefs near populated areas. Greatest within-archipelagic differences were found in Hawaiian and Mariana Archipelagos, where differences were consistent with, but likely not exclusively driven by, higher fishing pressure around populated areas. Results highlight the importance of the extremely remote reefs now contained within the system of Pacific Marine National Monuments as ecological reference areas
- …