852 research outputs found

    Methanol in the sky with diamonds

    Get PDF
    The present of gas phase methanol in dense interstellar molecular clouds was established by radio detection of its rotational emission lines. However, the position, width, and profile of a absorption band near 1470 cm(exp -1) in the IR spectra of many dense molecular clouds strongly suggests that solid methanol is an important component of interstellar ices. In an attempt to better constrain the identification of 1470 cm(exp -1) feature, we began a program to search for other characteristic absorption bands of solid state methanol in the spectra of objects known to produce this band. One such feature is now identified in the spectra of several dense molecular clouds and its position, width, and profile fit well with those of laboratory H2O:CH3OH ices. Thus, the presence of methanol-bearing ices in space is confirmed

    Intranasal immunisation with Ag85B peptide 25 displayed on Lactococcus lactis using the PilVax platform induces antigen-specific B- and T-cell responses.

    Get PDF
    Mycobacterium tuberculosis (Mtb) remains a global epidemic despite the widespread use of BCG. Consequently, novel vaccines are required to facilitate a reduction in Mtb morbidity and mortality. PilVax is a peptide delivery strategy for the generation of highly specific mucosal immune responses and is based on the food-grade bacterium Lactococcus lactis that is used to express selected peptides engineered within the Streptococcus pyogenes M1T1 pilus, allowing for peptide amplification, stabilisation, and enhanced immunogenicity. In the present study, the dominant T cell epitope from the Mtb protein Ag85B was genetically engineered into the pilus backbone subunit and expressed on the surface of L. lactis. Western blot and flow cytometry confirmed formation of pilus containing the peptide DNA sequence. B cell responses in intranasally vaccinated mice were analysed by ELISA while T cell responses were analysed by flow cytometry. Serum titres of peptide specific IgG and IgA were detected, confirming vaccination produced antibodies against the cognate peptide. Peptide-specific IgA was also detected across several mucosal sites sampled. Peptide-specific CD4+ T cells were detected at levels similar to those of mice immunised with BCG. PilVax immunisation resulted in an unexpected increase in the numbers of CD3+ CD4- CD8- (double negative, DN) T cells in the lungs of vaccinated mice. Analysis of cytokine production following stimulation with the cognate peptide showed the major cytokine producing cells to be CD4+ T cells and DN T cells. This study provides insight into the antibody and peptide specific cellular immune responses generated by PilVax vaccination and demonstrates the suitability of this vaccine for conducting a protection study

    A Transiting Jupiter Analog

    Get PDF
    Decadal-long radial velocity surveys have recently started to discover analogs to the most influential planet of our solar system, Jupiter. Detecting and characterizing these worlds is expected to shape our understanding of our uniqueness in the cosmos. Despite the great successes of recent transit surveys, Jupiter analogs represent a terra incognita, owing to the strong intrinsic bias of this method against long orbital periods. We here report on the first validated transiting Jupiter analog, Kepler-167e (KOI-490.02), discovered using Kepler archival photometry orbiting the K4-dwarf KIC-3239945. With a radius of (0.91±0.02)(0.91\pm0.02) RJupR_{\mathrm{Jup}}, a low orbital eccentricity (0.06−0.04+0.100.06_{-0.04}^{+0.10}) and an equilibrium temperature of (131±3)(131\pm3) K, Kepler-167e bears many of the basic hallmarks of Jupiter. Kepler-167e is accompanied by three Super-Earths on compact orbits, which we also validate, leaving a large cavity of transiting worlds around the habitable-zone. With two transits and continuous photometric coverage, we are able to uniquely and precisely measure the orbital period of this post snow-line planet (1071.2323±0.00061071.2323\pm0.0006 d), paving the way for follow-up of this K=11.8K=11.8 mag target.Comment: 14 pages, 10 figures. Accepted to ApJ. Posteriors available at https://github.com/CoolWorlds/Kepler-167-Posterior

    Identifying Organic Molecules in Space: The AstroBiology Explorer (ABE) Mission Concept

    Get PDF
    The AstroBiology Explorer (ABE) mission concept consists of a dedicated space observatory having a 60 cm class primary mirror cooled to T 2000 of about 1500 objects including galaxies, stars, planetary nebulae, young stellar objects, and solar system objects. Keywords: Astrobiology, infrared, Explorers, interstellar organics, telescope, spectrometer, space, infrared detector

    Comparison of the Organic Composition of Cometary Samples with Residues Formed from the UV Irradiation of Astrophysical Ice Analogs

    Get PDF
    The NASA Stardust mission successfully collected material from Comet 81P/Wild 2 [1], including authentic cometary grains [2]. X-ray absorption near-edge structure (XANES) spectroscopy analysis of these samples indicates the presence of oxygen-rich and nitrogen-rich organic materials, which contain a broad variety of functional groups (carbonyls, C=C bonds, aliphatic chains, amines, arnides, etc.) [3]. One component of these organics appears to contain very little aromatic carbon and bears some similarity to the organic residues produced by the irradiation of ices of interstellar/cometary composition, Stardust samples were also recently shown to contain glycine, the smallest biological amino acid [4]. Organic residues produced froth the UV irradiation of astrophysical ice analogs are already known to contain a large suite of organic molecules including amino acids [5-7], amphiphilic compounds (fatty acids) [8], and other complex species. This work presents a comparison between XANES spectra measured from organic residues formed in the laboratory with similar data of cometary samples collected by the Stardust missio

    Carbonates Found in Stardust Aerogel Tracks

    Get PDF
    Preliminary examination of particles collected from Comet Wild 2 suggest that this comet is chondritic and formed under multiple processes. The lack of any hydrated minerals strongly suggests that most, if not all of these processes were anhydrous [1,2,3]. However, carbonates were found in particles extracted from 4 different tracks in the aerogel. It is our belief that these carbonates have a terrestrial origin and are a contaminant in these samples

    Mg/Ca paleothermometry in the Central Gulf of Cadiz during Heinrich Events

    Get PDF
    The Astrobiology Explorer (ABE) is a MIDEX mission concept, currently under Concept Phase A study at NASA's Ames Research Center in collaboration with Ball Aerospace & Technologies, Corp., and managed by NASA's Jet Propulsion Laboratory. ABE will conduct infrared spectroscopic observations to address important problems in astrobiology, astrochemistry, and astrophysics. The core observational program would make fundamental scientific progress in understanding the distribution, identity, and evolution of ices and organic matter in dense molecular clouds, young forming stellar systems, stellar outflows, the general diffuse ISM, HII regions, Solar System bodies, and external galaxies. The ABE instrument concept includes a 0.6 m aperture Ritchey-Chretien telescope and three moderate resolution (R = 2000-3000) spectrometers together covering the 2.5-20 micron spectral region. Large format (1024 x 1024 pixel) IR detector arrays will allow each spectrometer to cover an entire octave of spectral range per exposure without any moving parts. The telescope will be cooled below 50 K by a cryogenic dewar shielded by a sunshade. The detectors will be cooled to ~7.5 K by a solid hydrogen cryostat. The optimum orbital configuration for achieving the scientific objectives of the ABE mission is a low background, 1 AU Earth driftaway orbit requiring a Delta II launch vehicle. This configuration provides a low thermal background and allows adequate communications bandwidth and good access to the entire sky over the ~1.5 year mission lifetime

    Olivine in Almahata Sitta - Curiouser and Curiouser

    Get PDF
    Almahata Sitta (hereafter Alma) is an anomalous, polymict ureilite. Anomalous features include low abundance of olivine, large compositional range of silicates, high abundance and large size of pores, crystalline pore wall linings, and overall finegrained texture. Tomography suggests the presence of foliation, which is known from other ureilites. Alma pyroxenes and their interpretation are discussed in two companion abstracts. In this abstract we discuss the composition of olivine in Alma, which is indicative of the complexity of this meteorite
    • …
    corecore