8,233 research outputs found

    Parallel Weighted Random Sampling

    Get PDF
    Data structures for efficient sampling from a set of weighted items are an important building block of many applications. However, few parallel solutions are known. We close many of these gaps both for shared-memory and distributed-memory machines. We give efficient, fast, and practicable algorithms for sampling single items, k items with/without replacement, permutations, subsets, and reservoirs. We also give improved sequential algorithms for alias table construction and for sampling with replacement. Experiments on shared-memory parallel machines with up to 158 threads show near linear speedups both for construction and queries

    Scalable Generation of Scale-free Graphs

    Full text link
    We explain how massive instances of scale-free graphs following the Barabasi-Albert model can be generated very quickly in an embarrassingly parallel way. This makes this popular model available for studying big data graph problems. As a demonstration, we generated a Petaedge graph in less than an hour

    Fast Parallel Operations on Search Trees

    Full text link
    Using (a,b)-trees as an example, we show how to perform a parallel split with logarithmic latency and parallel join, bulk updates, intersection, union (or merge), and (symmetric) set difference with logarithmic latency and with information theoretically optimal work. We present both asymptotically optimal solutions and simplified versions that perform well in practice - they are several times faster than previous implementations

    PReaCH: A Fast Lightweight Reachability Index using Pruning and Contraction Hierarchies

    Full text link
    We develop the data structure PReaCH (for Pruned Reachability Contraction Hierarchies) which supports reachability queries in a directed graph, i.e., it supports queries that ask whether two nodes in the graph are connected by a directed path. PReaCH adapts the contraction hierarchy speedup techniques for shortest path queries to the reachability setting. The resulting approach is surprisingly simple and guarantees linear space and near linear preprocessing time. Orthogonally to that, we improve existing pruning techniques for the search by gathering more information from a single DFS-traversal of the graph. PReaCH-indices significantly outperform previous data structures with comparable preprocessing cost. Methods with faster queries need significantly more preprocessing time in particular for the most difficult instances

    (Semi-)External Algorithms for Graph Partitioning and Clustering

    Full text link
    In this paper, we develop semi-external and external memory algorithms for graph partitioning and clustering problems. Graph partitioning and clustering are key tools for processing and analyzing large complex networks. We address both problems in the (semi-)external model by adapting the size-constrained label propagation technique. Our (semi-)external size-constrained label propagation algorithm can be used to compute graph clusterings and is a prerequisite for the (semi-)external graph partitioning algorithm. The algorithm is then used for both the coarsening and the refinement phase of a multilevel algorithm to compute graph partitions. Our algorithm is able to partition and cluster huge complex networks with billions of edges on cheap commodity machines. Experiments demonstrate that the semi-external graph partitioning algorithm is scalable and can compute high quality partitions in time that is comparable to the running time of an efficient internal memory implementation. A parallelization of the algorithm in the semi-external model further reduces running time

    HordeSat: A Massively Parallel Portfolio SAT Solver

    Full text link
    A simple yet successful approach to parallel satisfiability (SAT) solving is to run several different (a portfolio of) SAT solvers on the input problem at the same time until one solver finds a solution. The SAT solvers in the portfolio can be instances of a single solver with different configuration settings. Additionally the solvers can exchange information usually in the form of clauses. In this paper we investigate whether this approach is applicable in the case of massively parallel SAT solving. Our solver is intended to run on clusters with thousands of processors, hence the name HordeSat. HordeSat is a fully distributed portfolio-based SAT solver with a modular design that allows it to use any SAT solver that implements a given interface. HordeSat has a decentralized design and features hierarchical parallelism with interleaved communication and search. We experimentally evaluated it using all the benchmark problems from the application tracks of the 2011 and 2014 International SAT Competitions. The experiments demonstrate that HordeSat is scalable up to hundreds or even thousands of processors achieving significant speedups especially for hard instances.Comment: Accepted for SAT 201

    Parallel Graph Partitioning for Complex Networks

    Full text link
    Processing large complex networks like social networks or web graphs has recently attracted considerable interest. In order to do this in parallel, we need to partition them into pieces of about equal size. Unfortunately, previous parallel graph partitioners originally developed for more regular mesh-like networks do not work well for these networks. This paper addresses this problem by parallelizing and adapting the label propagation technique originally developed for graph clustering. By introducing size constraints, label propagation becomes applicable for both the coarsening and the refinement phase of multilevel graph partitioning. We obtain very high quality by applying a highly parallel evolutionary algorithm to the coarsened graph. The resulting system is both more scalable and achieves higher quality than state-of-the-art systems like ParMetis or PT-Scotch. For large complex networks the performance differences are very big. For example, our algorithm can partition a web graph with 3.3 billion edges in less than sixteen seconds using 512 cores of a high performance cluster while producing a high quality partition -- none of the competing systems can handle this graph on our system.Comment: Review article. Parallelization of our previous approach arXiv:1402.328
    corecore