11 research outputs found

    Maize glutathione-dependent formaldehyde dehydrogenase: protein sequence and catalytic properties

    No full text
    Glutathione-dependent formaldehyde dehydrogenase (FDH; EC 1.2.1.1) has been purified 3900-fold from maize cell-suspension cultures to a specific activity of 4.68 mu mol (mg protein)(-1) min(-1). The homogeneous enzyme consisted of two identical subunits with a molecular mass of 42 kDa, and an isoelectric point of 5.8. Eight tryptic peptides were sequenced and gave a perfect fit to the protein sequence derived from maize Fdh cDNA (J. Fliegmann and H. Sandermann, 1997, Slant Mol Biol 34: 843-854). There was 62% identity with the eucaryotic FDH consensus sequence. Michaelis constants of approx. 20 mu m (formaldehyde), approx; 50 mu m (glutathione) and approx. 31 mu m (NAD(+)) were determined for the maize enzyme as well as for FDH partially purified from dog lung. Besides S-hydroxymethylglutathione, pentanol-1, octanol-1, and omega-hydroxy-fatty acids served as substrates for both FDH preparations. The unusual substrate specificity indicates that FDH may be involved in the detoxification of long-chain lipid peroxidation products

    Ozone and ultraviolet B effects on the defense-related proteins β-1,3-glucanase and chitinase in tobacco

    No full text
    The air pollutant ozone is a potent abiotic inducer of defense-related enzymes such as pathogenesis-related proteins. Here we report on the accumulation of beta-1,3-glucanase and chitinase in Nicotiana tabacum L. treated with ozone and ultraviolet B radiation, singly and in combination, under a simulated sunlight spectrum. Ozone (0.16 mu L . L(-1), 2 x 5 h) induced the basic isoforms of beta-1,3-glucanase in both, ozone-sensitive (Eel W3) and -tolerant (Bel B) cultivars, while chitinase was only affected in cv. Bel W3. Ultraviolet B radiation (7.5 MED) alone did not lead to beta-1,3-glucanase or chitinase induction. In combined treatments ultraviolet B increased the ozone-dependent lesion formation and reduced chitinase accumulation in the sensitive cv. Bel W3. Analysis of the intercellular washing fluid of ozone-treated plants revealed the accumulation of a major ozone-related protein (O(3)R-1) of 28 kDa within 32 h. Microsequence analysis of two tryptic peptides showed 100 % homology to acidic chitinase PR-3b. These results indicate that basic beta-1,3-glucanase and chitinase are distinctly regulated in ozone and ultraviolet B treated tobacco, and that ultraviolet B radiation with a similar UV edge as the solar spectrum does not lead to an accumulation of basic pathogenesis-related proteins

    Ozone-induced oxidative burst in the ozone biomonitor plant, tobacco Bel W3

    No full text
    Localized cell death is a common feature of ozone phytotoxicity and is generally thought to be initiated by the strong oxidant ozone itself as well as by ozone-derived reactive oxygen intermediates (ROIs). Here we report that ozone (150 nl l(-1), 5 h) elicits cellular ROI production in the ozone-sensitive tobacco cv. Bel W3, but not in the tolerant cv. Bel B. Both cultivars exhibited a transient first maximum of apoplastic ROI accumulation followed by a comparable induction of glutathione peroxidase transcript levels. During postcultivation in pollutant-free air, a second and sustained peak of apoplastic ROI accumulation was detected only in cv. Bel W3. Histochemical staining revealed a spot-like accumulation of H2O2 and, to a lesser extent, of superoxide anion radicals in this cultivar. The H2O2 spots ('burst initiation sites') occurred mainly in the vicinity of leaf veins and correlated in number and distribution with discrete sites of local cell death and with visible symptoms that evolved between 15 and 72 h. The results indicate that ozone effects are amplified in the sensitive tobacco cv. Bel W3 by an oxidative burst which participates in the generation of hypersensitive cell deathlike lesions
    corecore