71 research outputs found

    Options and Trade-offs:Reducing Greenhouse Gas Emissions from Food Production Systems

    Get PDF

    Energy use efficiency in biomass production systems.

    Get PDF

    A comparative study of the land required for food and cooking fuel in rural India

    Get PDF
    Land is a limited resource that provides food and cooking fuel to the rural population. In this paper, we determine the land required for food production and compare it with the land required for cooking fuel (i.e. fuelwood) for six different regions of India. We use regional data to assess the land requirements for both food and fuelwood. Dietary patterns and agricultural yields are the major drivers of land demand for food production. The average land requirement for food is about 1000 m(2)/cap/yr, but the values range between 800-1300m(2)/cap/yr. The greatest proportion of this land requirement is for cereals, especially rice and wheat. Determining the land needed for cooking fuel requires biomass productivity and fuelwood use. We found that the average land requirement for fuelwood is about 3 to 7 times larger than the area required to produce food. Thus, there is a wide disparity in land demand between all the regions of India. Dietary change is not an option as rural inhabitants are already consuming less than their urban counterparts. Changes to cooking fuels could be another option. This comparative study shows the high demand for land for cooking fuel in comparison to food. It implies that, from a land requirement perspective, reducing the fuelwood consumption and shifting to a more efficient cooking fuel would be a better option

    Alternative energy supply system to a rural village in Ethiopia

    Get PDF
    Abstract Background Most households in rural developing countries do not have access to modern energy supply. Household level biogas energy was considered as an option but failed due to lack of sufficient resources for its installation and operation. A community energy system can be an option, but most studies focused on off-grid electricity. This energy system cannot be a realistic option particularly for cooking demand. An efficient and suitable system matching local resources and demand expectation needs to be developed which this study focuses on assessing. Biogas and solar energy technologies are viable to establish such kind of a system since they can be converted to different forms of energy. Therefore, this study aims to determine efficient biogas and solar energy production and utilization options for small scale village energy application in rural Ethiopia. Methods The efficiencies of the production and utilization options are determined based on the system configurations involving resource, conversion, and utilization combination models. We used local resources, data, and relevant literature information for the system analysis. Results The analysis shows that most energy is needed in the form of heat for cooking and a smaller part in the form of electricity (about 10%). The community waste stream converted to biogas will be enough for cooking, but not enough biogas is left to produce enough electricity. Co-digesting altogether provides biogas that can meet only about 75% of the electricity demand. Concentrated solar cookers can be an alternative for cooking in areas where installation of biogas is not possible. About 2-m2 size solar concentrator is sufficient to meet each household’s cooking energy demand. The lighting and appliance energy demand can be met with photovoltaic (PV) energy produced with reasonably sized panels. However, the use of electrical energy for cooking produced with PV cannot be an economic option with the available technologies. Conclusions The community energy system involving anaerobic co-digestion (biogas) and/or solar energy technologies is viable to meet the demand when efficient production and conversion is made based on specific local resource supply and demand

    Bio-Wastes as an Alternative Household Cooking Energy Source in Ethiopia

    Get PDF
    Up to the present day, wood has been used to supply the needs for cooking in rural Africa. Due to the ongoing deforestation, households need to change to other energy sources. To cover this need, a large amount of people are using residues from agriculture (straw, manure) instead. However, both straw and manure also have a function in agriculture for soil improvement. Using all the straw and manure will seriously affect the food production. In this paper we first determine the amount of energy that households need for cooking (about 7 GJ per year). Then we estimate the amount of residues that can be obtained from the agricultural system and the amount of energy for cooking that can be derived from this amount when different conversion techniques are used. The amount of residues needed is strongly affected by the technology used. The traditional three stone fires require at least two times as much resource than the more advanced technologies. Up to 4 ha of land or 15 cows are needed to provide enough straw and manure to cook on the traditional three stone fires. When more efficient techniques are used (briquetting, biogas) this can be reduced to 2 ha and six cows. Due to large variation in resource availability between households, about 80% of the households own less than 2 ha and 70% holds less than four cows. This means that even when modern, energy efficient techniques are used the largest share of the population is not able to generate enough energy for cooking from their own land and/or cattle. Most rural households in Sub-Saharan Africa may share similar resource holding characteristics for which the results from the current findings on Ethiopia can be relevant

    The monthly dynamics of blue water footprints and electricity generation of four types of hydropower plants in Ecuador

    Get PDF
    Water evaporates from reservoirs of hydropower plants (HPPs), often in significant volumes. Reservoir evaporation is a dynamic phenomenon depending on climate, varying size of open water surfaces (OWS), and electricity production. Due to a lack of data and methods to estimate the OWS's size variation, previous studies assessed HPPs water footprints (WFs) considering static OWSs acknowledging the uncertainty of this omission. This study estimates WFs of HPPs, considering dynamic OWSs for four plant types in Ecuador, Flooded lakes, and Flooded rivers, with dam heights lower or higher than their Gross Static Head (GSH). It quantifies OWSs size variation using a Digital Elevation Model and GSH data, assessing OWS evaporation, effects on electricity production and WFs. There are large differences among the evaporation of HPPs when OWS size variations are considered. HPP operation, geographical features, and climate determine temporal differences. Flooded lake HPPs have relatively large WFs. Flooded River HPPs, with dam heights below their GSH, have the smallest WFs, but water storage capacity is limited. Static area approaches underestimated annual WFs by 10% (Flooded Lake HPPs) to 80% (Flooded River HPPs). Earlier studies showed effects of HPPs on water from a water management perspective, suggesting that less water-intensive HPP technologies are favorable, or that other water-efficient electricity-generating technologies, like solar or wind, should replace HPPs. This study also included the electricity perspective, indicating that energy management and water storage are important factors for WFs. The most water-effective technology cannot fulfill current electricity production due to a lack of storage options. The system dynamics analysis indicates that aiming for small WFs is not always the best option from an energy and water perspective

    How Much Time Does a Farmer Spend to Produce My food? An International Comparison of the Impact of Diets and Mechanization

    Get PDF
    Work is one of the main inputs in agriculture. It can be performed by humans, animals, or machinery. Studies have shown strong differences throughout the world in labour required to produce a kilogram of food. We complement this line of research by linking these data to food consumption patterns, which are also strongly different throughout the world. We calculate the hours of farm labour required to produce a person’s annual food consumption for four scenarios. These scenarios are comprised of two extreme cases for production systems and diets, respectively, that illustrate prevailing global differences. Our results show that the farm labour requirements differ by a factor of about 200 among production systems, and by a factor of about two among consumption patterns. The gain in farm labour efficiency with mechanization is enormous: only 2–5 hours of farm labour are needed to produce the food consumed by a person in a year. This value is much lower than the time an average person spends on buying food, cooking, or eatin
    • …
    corecore