b university of ;”g////; . —
L : e % niversity Medical Center Groningen
773 groningen g”,//

University of Groningen

The monthly dynamics of blue water footprints and electricity generation of four types of
hydropower plants in Ecuador

Vaca Jiménez, Santiago; Gerbens-Leenes, P.W.; Nonhebel, Sanderine

Published in:
Science of the Total Environment

DOI:
10.1016/j.scitotenv.2020.136579

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2020

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Vaca Jiménez, S., Gerbens-Leenes, P. W., & Nonhebel, S. (2020). The monthly dynamics of blue water
footprints and electricity generation of four types of hydropower plants in Ecuador. Science of the Total
Environment, 713, [136579]. https://doi.org/10.1016/j.scitotenv.2020.136579

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.


https://doi.org/10.1016/j.scitotenv.2020.136579
https://research.rug.nl/en/publications/3254fc11-d873-40a9-9676-efa70f48ab89
https://doi.org/10.1016/j.scitotenv.2020.136579

Science of the Total Environment 713 (2020) 136579

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Contents lists available at ScienceDirect

Science o«
Total Environment

The monthly dynamics of blue water footprints and electricity generation L)

Check for

of four types of hydropower plants in Ecuador

S. Vaca-Jiménez **, P.W. Gerbens-Leenes ¢, S. Nonhebel ?

@ Center for Energy and Environmental Sciences, University of Groningen, 9747 AG Groningen, the Netherlands
b Escuela Politécnica Nacional, Ladrén de Guevera, E11-253 Quito, Ecuador

HIGHLIGHTS

GRAPHICAL ABSTRACT

The evaporation and open water sur-
faces of hydropower plants have daily
variation.

Static open water surface approaches
have under and overestimated evapora-
tion.

Climate, reservoir's size, storage, and
electricity output define WFs of hydro-
power.

Plants with flooded rivers and large gross
static heads are most water-efficient.
Plants with small WFs are not the best
option from a water and energy
perspective.
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Water evaporates from reservoirs of hydropower plants (HPPs), often in significant volumes. Reservoir evapora-
tion is a dynamic phenomenon depending on climate, varying size of open water surfaces (OWS), and electricity
production. Due to a lack of data and methods to estimate the OWS's size variation, previous studies assessed
HPPs water footprints (WFs) considering static OWSs acknowledging the uncertainty of this omission. This
study estimates WFs of HPPs, considering dynamic OWSs for four plant types in Ecuador, Flooded lakes, and
Flooded rivers, with dam heights lower or higher than their Gross Static Head (GSH). It quantifies OWSs size var-
iation using a Digital Elevation Model and GSH data, assessing OWS evaporation, effects on electricity production
and WFs. There are large differences among the evaporation of HPPs when OWS size variations are considered.
HPP operation, geographical features, and climate determine temporal differences. Flooded lake HPPs have rela-
tively large WFs. Flooded River HPPs, with dam heights below their GSH, have the smallest WFs, but water storage
capacity is limited. Static area approaches underestimated annual WFs by 10% (Flooded Lake HPPs) to 80%
(Flooded River HPPs). Earlier studies showed effects of HPPs on water from a water management perspective,
suggesting that less water-intensive HPP technologies are favorable, or that other water-efficient electricity-
generating technologies, like solar or wind, should replace HPPs. This study also included the electricity
perspective, indicating that energy management and water storage are important factors for WFs. The most
water-effective technology cannot fulfill current electricity production due to a lack of storage options. The sys-
tem dynamics analysis indicates that aiming for small WFs is not always the best option from an energy and
water perspective.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Hydropower plants (HPPs) consume freshwater due to evaporation
from the surface of their reservoirs (Gleick, 1992; Mekonnen and
Hoekstra, 2012). The water volume evaporated per unit of electricity
is larger than for most of the other renewable and non-renewable elec-
tricity generating technologies (except biomass) (Gleick, 1994;
Mekonnen et al., 2016; Vaca-Jiménez et al., 2019a). As the global elec-
tricity mix is transitioning from fossil to renewable energy sources to re-
duce GHG emissions, hydropower is likely to become the largest
renewable technology deployed globally (IEA, 2016). Thus, a tradeoff
appears as the new global electricity mix is low in carbon emissions,
but significantly more water-intensive (Mekonnen et al., 2016). This
can be problematic in a water-constrained world.

The publication of Gleick (1992) on energy and water relationships
was the start of many studies assessing water consumption by hydro-
power plants (HPPs). Most studies have focused on the water perspec-
tive, showing the effect of HPP reservoirs on the hydrosphere. Key
studies include Bakken et al. (2016a, 2016b), Coelho et al. (2017),
Grubert (2016), Herath et al. (2011), Hogeboom et al. (2018), Liu et al.
(2015), Mekonnen and Hoekstra (2012), and Scherer and Pfister
(2016). Those studies have used different datasets, case studies, and
methods. They have all considered evaporation as the main factor of
HPP water consumption.

Reservoir evaporation is a dynamic phenomenon, which depends on
the variation of the open water surface (OWS) area and temporal cli-
mate variation. Moreover, HPP electricity generation varies in time,
constrained by energy management and dependent on electricity mix
dynamics and physical variables. In a specific mix, often, some power
plants are prioritized over others (Egré and Milewski, 2002; Vaca-
Jiménez et al., 2019b). Physical variables that influence electricity gen-
eration are, for example, the size of the water flows passing the turbines
and reservoir water level heights (Gross Static Head, GSH). These two
variables are related and climate-dependent, showing temporal varia-
tion. For instance, precipitation variation translates into variations of
river flows, surface sizes and GSH's, affecting electricity production
(Gleick, 1992). Additionally, a HPP system often has a feedback loop,
as electricity production also affects reservoir characteristics. For in-
stance, more electricity production with faster turbine flow rates de-
creases reservoir water volumes (Cai et al., 2018). Decreased water
volumes translate into lower heads and smaller electricity output.
Hence, HPP water consumption is part of a dynamic process influenced
by interlinked variables, e.g., evaporation rates, open water surface
areas and electricity production.

So far, research has not considered process dynamics, like reservoir
surface size variation, assuming a constant surface area (a constant ap-
proach). Several studies have estimated these surface areas using differ-
ent data sources. For instance, Hogeboom et al. (2018) and Scherer and
Pfister (2016) have used data from global databases as the Global Reser-
voir and dam databases (GRanD) (Lehner et al., 2011), or the World
Register of Dams (WRD) (ICOLD, 2018). Others, e.g., Herath et al.
(2011) and Vaca-Jiménez et al. (2019a), have used approximated mea-
surements using Geographic Information Systems (GIS). All studies
have considered a static OWS due to a lack of data on size variation
and the large scope that they covered (most of them assessed a large
range of HPPs). However, most studies emphasize that excluding OWS
size variation leads to uncertainty of water consumption values because
reservoir evaporation might be over or underestimated (Bakken et al.,
2013; Hogeboom et al., 2018; Mekonnen and Hoekstra, 2012). They rec-
ommend additional, more detailed case studies that include OWS size
variation.

Our previous work has quantified the WF of Ecuadorian electricity
technologies (Vaca-Jiménez et al., 2019a), showing how technology op-
eration dynamics affect temporal and spatial WF variation of an electric-
ity mix (Vaca-Jiménez et al., 2019b). However, those studies used the
constant approach assuming the HPP OWS size remains the same. This

study is a continuation of our earlier work, including system dynamics
of HPPs in which OWS size variation influences WFs. Using previous
work, we focused on a smaller case study with more detail taking tem-
poral variation into account.

Ecuador is a water-abundant country with large hydropower poten-
tial. HPPs are the largest contributors to the country's electricity mix
(MEER, 2017). However, their electricity output decreases seasonally
when river water is limited. There are many HPPs with different infra-
structure, capacity, and technology, for example, HPPs with reservoirs
that form Flooded Lakes or Flooded Rivers (Vaca-Jiménez et al., 2019a),
and HPPs with a dam height (DH) larger or smaller than the GSH. This
study aims to estimate the WF of HPPs, considering the dynamics of
the hydropower system for four types of HPPs based on different reser-
voir types and DH-GSH relations.

This study answers the following research questions: (i) How much
does reservoir evaporation of four Ecuadorian HPPs types change
through the year due to temporal climate and reservoir size variation?
(ii) What is the temporal variation of the WF and electricity production
of the four types of Ecuadorian HPPs? And how does this variation affect
their annual WF? (iii) What can we learn from the dynamics between
electricity generation, water storage (reservoir size), and climate of
these four HPPs? And (iv) what are the implications for the electricity
system and its WF when the most water-efficient technology is
scaled-up to replace the existing electricity generating infrastructure
in Ecuador?

2. System description

Evaporation from HPP OWSs depends on three factors: (i) HPP
technology; (ii) geographical features of the site where the HPP is lo-
cated; and (iii) climate. Factor (i) defines electricity output, while
factors (ii) and (iii) determine the OWS shape and water evaporation
rates.

2.1. Hydropower plant technologies and classification

Based on the OWS size and shape, HPPs can be classified into three
groups: (i) Dammed HPPs, which impound water before a dam, usually
having large reservoirs; (ii) run-of-the-river HPPs (ROR), which divert
river flows by a weir, which is smaller than a dam. They usually do
not create large reservoirs, but ponds without significant temporal
OWS size variation, and (iii) In-conduit HPPs, in which small HPPs are lo-
cated in-between water supply pipelines. These HPPs do not have
OWSs. Previous studies have shown that dammed HPPs have the largest
WFs (Liu et al., 2015; Vaca-Jiménez et al., 2019a).

Dammed HPPs include two subgroups, depending on the power-
house position in relation to the DH: (i) HPPs with powerhouses at
the bottom of the dam. The DH is larger than the GSH (DH > GSH);
and (ii) HPPs with large penstocks that conduct water into power-
houses below the dam's bottom. The DH is smaller than the GSH
(DH < GSH) (Gleick, 1994, 1992). Usually, DH > GSH HPPs have larger
evaporative losses per unit of electricity output, as they produce less
electricity than comparable DH < GSH HPPs (Gleick, 1994). Dammed
HPPs can also be classified based on their OWS shape. Vaca-
Jiménez et al. (2019a) classified them into (i) HPPs with OWSs
with long, wide, and shallow flooded areas (Flooded Lakes); and (ii)
HPPs with OWSs with long, narrow and deep flooded areas
(Flooded Rivers). HPPs with Flooded Rivers have smaller WFs than
Flooded Lakes, because, generally, Flooded Rivers have smaller
flooded areas than Flooded Lakes per unit of electricity produced
(Gleick, 1994; Liu et al., 2015; Vaca-Jiménez et al., 2019b). There
are four dammed HPP groups using these two classification criteria:
(i) DH > GSH - Flooded Lake, (ii) DH > GSH - Flooded River, (iii) DH <
GSH - Flooded Lakes, and (iv) DH < GSH - Flooded River.
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2.2. Geography

Ecuador, located in South America, is divided into two parts by the
Andes mountains from north to south. Rivers flow from the top of the
Andes to the two major basins: the Pacific (west of the Andes) and
the Amazon basin (east of the Andes) (SENAGUA, 2002). HPPs are
built in the Andes' highlands, lowlands, and in between them. The
HPP OWSs in the highlands are usually Flooded Lakes; the HPP OWSs
in between highlands and lowlands Flooded Rivers (Vaca-Jiménez
et al.,, 2019a).

2.3. Climate

Ecuador's geography causes different climates so that the two basins
have different weather conditions and freshwater availability. Ecuador
has two seasons: a dry and a wet season. The Amazon basin has 88%
of Ecuador’s freshwater resources (CEPAL, 2010), but the difference be-
tween wet and dry seasons is smaller than in the Pacific. Reservoirs in
the Amazon basin have smaller volumetric fluctuations than reservoirs
in the Pacific basin as river water volumes are relatively constant (Vaca-
Jiménez et al., 2019b).

For both basins, there is a distinction between the climate of the
highlands and the lowlands. The Ecuadorian highlands have dry tem-
perate climates; the lowlands humid tropical climates (INAMHI, 2018;
Rollenbeck and Bendix, 2011). HPP reservoirs in the highlands have
smaller evaporation rates than reservoirs in the lowlands because tem-
perature and solar radiation are smaller.

2.4. Composition of the Ecuadorian electricity mix and its dynamics

The Ecuadorian electricity mix includes hydropower, thermal, bio-
mass, solar (PV), wind, and biogas power plants. 97% of Ecuadorian elec-
tricity is produced by HPPs and thermal power plants (TPPs), using
crude oil derivatives (ARCONEL, 2018). HPPs are the largest electricity
producers (MEER, 2017). Their output increases during the wet season
when river water volumes are relatively large and decreases during
the dry season. This variation affects the overall electricity production.
In 2017, Ecuadorian HPPs had a capacity factor of 51% (ARCONEL,
2018), which is smaller than the average 54% of the region (Kumar
et al,, 2011). During the dry season, TPPs serve as a backup of HPPs, in-
creasing their production to fulfill electricity demand.

3. Method

The water footprint (WF) method is a tool that estimates freshwater
volumes consumed by humans (Hoekstra et al., 2011), for example,
water to produce electricity by hydropower (Mekonnen and Hoekstra,
2012). Theoretically, the WF of a HPP includes a direct and indirect
WEF. The direct WF is the blue water that evaporates from the OWS.
The indirect WF considers HPP construction and decommissioning
(Vaca-Jiménez et al., 2019a). Some studies, e.g., Hogeboom et al.
(2018) and Mekonnen et al. (2015), have shown that WFs of the con-
struction and decommissioning phases are negligible compared to the
direct WF caused by OWS evaporation. Therefore, we assumed that
the indirect WF is negligible.

The assessment of the hydropower WF in Ecuador included five clus-
ters of steps: (i) the estimation of temporal variation of OWSs sizes per
HPP (steps 1-3); (ii) the calculation of daily OWS evaporation rate per
HPP (steps 4-5); (iii) the calculation of HPP WFs (steps 6-9); (iv) the
analysis of variable dynamics affecting HPP WFs (steps 10-11), which
includes the dynamics of the relationship between evaporation rates,
OWS area sizes and storage, the effect on electricity production, and
the HPP WFs (m>/T] and m>/month); and (v) the assessment of impacts
on the electricity system and blue WF when the most-water efficient
technology replaces current technologies (steps 12-19). Fig. 1 shows
the calculation steps and how they relate to each other.

3.1. Case studies

Based on the DH-GSH relation and the OWS shape, we identified four
HPP groups in Ecuador. For each group, we selected a HPP that repre-
sents the group: Marcel Laniado, Mazar, Paute, and Saucay. Marcel
Laniado (213 MW) with DH > GSH HPP is located in the Pacific basin
lowlands (CELEC EP - Hidronacién, 2018). Its OWS is the largest in
Ecuador, forming a long and wide Flooded Lake, flooding 30,000 ha of
land (Lehner et al., 2011). Mazar (170 MW) with DH > GSH is located
in the Andes in the Amazon basin (CELEC EP - Hidropaute, 2018). Its
OWS is a long and narrow Flooded River with a reservoir constrained
by mountains. Paute (1075 MW), nearby Mazar (CELEC EP - Hidropaute,
2018), has a DH < GSH and an OWS forming a long and narrow Flooded
River. Saucay (24 MW), with a DH < GSH, is located in the highlands of
the Amazon basin (Elecaustro, 2018). It has two reservoirs that form
Flooded Lakes: (i) Chanlud and (ii) El Labrado. During the wet season,
Marcel Laniado and Mazar's OWSs store water for over a month
(CELEC EP - Hidronacién, 2013; CELEC EP - Hidropaute, 2018), while
Paute and Saucay's OWSs store water for only a few days (CELEC EP -
Hidropaute, 2018; Elecaustro, 2018). Table 1 summarizes the character-
istics and OWSs of the four HPPs considered in this study.

3.2. Estimation of temporal variation of Open Water Surface size

Power companies and dam managers usually measure and record
reservoir GSHs. The OWS size is seldom measured because it is irrele-
vant for HPP operation. Without data, OWS size variation needs to be es-
timated. The OWSs usually flood natural landscapes, which are seldom
geometrical or have parallel features, covering large land areas that
vary in altitude and depth, impeding the use of geometric approxima-
tions. HPP operators use GSH data to control reservoir water levels
and estimate potential electricity generation. There is a relation be-
tween GSH and OWS's size variation (see Fig. 2), but the relation is not
linear because the reservoir's shapes vary. Snyder et al. (2013) have
made risk assessments of places subject to flooding using topographical
information to create a 3D terrain model, a Digital Elevation Model
(DEM). We adopted this approach for the OWS size estimation consid-
ering the topographical information of the flooded area. When coupled
with daily historical GSH data, the DEM model estimates OWS size
changes. We applied the approach for the four HPP cases.

Step 1 created the DEM of HPP OWSs using ArcGIS, ArcMap 10® and
topographical terrain information from IGM (2018). Appendix A gives
the method used for the creation of the DEM.

Step 2 estimated the flooded area per day d of OWS r, A4[r] (ha),
using daily GSH data of OWS r as the elevation input of the Surface Vol-
ume tool of ArcGIS, ArcMap 10®. GSH data for 2003-2018 for Mazar and
Paute HPPs were derived from CELEC EP - Hidropaute (2018). For Mar-
cel Laniado, data for 2008-2014 were derived from CELEC EP -
Hidronacién (2014), and for Saucay, data from 2008 to 2018 were pro-
vided by the operator (Elecaustro, 2018). Appendix B gives the HPP GSH
data.

Finally, Step 3 compared the Ay4[r] of OWS r to the area reported in
the GRanD database (Lehner et al., 2011) and in Vaca-Jiménez et al.
(2019a), who measured Ecuadorian HPP OWS areas using satellite im-
aging and ArcGIS®.

3.3. Calculation of daily evaporation from hydropower open water surfaces

To calculate OWS daily evaporation rates, we used the Modified Pen-
man method (Harwell, 2012) that has also been used for similar studies,
e.g., Hogeboom et al. (2018), Mekonnen and Hoekstra (2012) and Vaca-
Jiménez et al. (2019a). It is effective to estimate OWS evaporation in
tropical regions (Coelho et al., 2018).

First, Step 4 located HPPs and related OWS from Vaca-Jiménez et al.
(2019a). Next, Step 5 calculated OWS daily evaporation rates, Evgy[r]
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Table 1

Characteristics of the four hydropower plants considered in this study and their open water surfaces.

Hydropower plant

Open Water Surface

Name Capacity [MW]? Altitude [masl] Type Name Maximum area [ha] Shape
GIs® GRanD®
Marcel Laniado 213 88 DH > GSH Daule-Peripa 29,500 30,000 Flooded lake
Mazar 170 2155 DH > GSH Mazar 737 446 Flooded river
Paute 1075 1990 DH < GSH D. Palacios 256 202 Flooded river
Saucay® 24 3470 DH < GSH Chanlud 66.3 - Flooded lake
El Labrado 61.7 - Flooded lake

¢ Data derived from ARCONEL (2019).
b

Refers to the area measurement based on Geographical Information System analysis, using satellite imaging. Data derived from Vaca-Jiménez et al. (2019a).

¢ Data derived from the Global reservoir and dam database (GRanD) Database (Lehner et al., 2011).

4 Based on the classification made by Vaca-Jiménez et al. (2019a).

€ Saucay has two reservoirs, Chanlud, and EI Labrado.

(mmy/day), as:

_ A Y
Ev4[r] = 0'7<A—+7 Rn +A—+y Ea> (1)

where R, is the effective net radiation (mmy/day), E, is the theoretical
evaporation from a Class A pan (mmy/day), A is the saturated vapor pres-
sure gradient, and vy is the psychrometric constant. These variables are
calculated using long-term average daily climate data, e.g., air tempera-
ture, dew point temperature, relative humidity, evaporation rate from a
Class A pan, wind speed, and solar radiation. Appendix C gives the equa-
tions to calculate these variables. We used data of weather stations near
the HPPs from INAMHI (2019) and solar radiation data from CONELEC
(2008). The selection method of the stations was adopted from Vaca-
Jiménez et al. (2019a), who paired stations and HPPs based on proxim-
ity and similar climatic conditions.

3.4. Calculation of water footprints of hydropower plants

For the calculation of HPP WFs, we used the Gross Method adopted
from Mekonnen and Hoekstra (2012). Step 6 calculated HPP WFs per
day d, WFy[p] (m?/day), considering OWS area variation as:

R
WFglp] = (10 + Evg[r] * Ag[r]) (2)

r=1

where the factor 10 is used to convert mm to m>/ha, Evg[r] is the daily
evaporation (mm) of OWS r of day d and A4[r] is the OWS area r (ha)
on day d. Evg[r] and A4r] are dynamic and vary in time. Some HPPs

a) Low gross static head

have two or more OWSs. For those cases, WFows[p] was calculated by
summing OWS's evaporation.

For comparison, we also calculated HPP WFs using the constant ap-
proach. Step 7 calculated HPP WFs based on Hogeboom et al. (2018),
WE,[p] (m?) as:

R
WFpalp] = (10 % Evg[r] + Amax[r] * k) (3)

r=1

where A;nq[ 1] is the maximum reported OWS r area, assumed constant
throughout the year, and k is a correction factor to avoid OWS evapora-
tion overestimation. Hogeboom et al. (2018) assumed the OWS is half-
full most of the time, using a value of 0.5625 for k. Data on HPP OWS size
were derived from the GRanD database (Lehner et al., 2011).

Step 8 calculated monthly and annual WFs, WF,,[p] and WF,[p] (m?),
per HPP p by aggregating WFy[p] per month m, next aggregating WF,,[p]
to a year.

Step 9 calculated monthly and annual WFs per unit of electricity,
WEFn, e[p] and WE, ([p] (m*/T]) as:

WFm,e UJ] = Méi&%)]
WEyelp =g 17 @)

where E,[p] is the multiannual average of electricity produced per
month m, and E,[p] is the annual average of electricity produced (TJ)
per HPP p. Data on E[p] and E,[p] were derived from Vaca-Jiménez
etal. (2019b).

b) High gross static head

Gross
Static
Head

Dam|
n (GSH2)

U

V]
GSH; < GSH;
Ad1 < Ad2

Area of the open
water surface (Ad1)

G,

Fig. 2. Relationship between Gross Static Head (GSH) and open water surface area (Aq) where a lower GSH translates into a smaller area.
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3.5. Variable dynamics affecting hydropower water footprints

We compared the monthly temporal variation of interlinked vari-
ables Ev4[r] and Ag4[r], estimating the effect on electricity production
En[p], and WFs,WFy[p].

Step 10 compared the temporal variation of Evy[r] and Ag[r] for OWS
r per HPP p. Next, Step 11 compared WF4[p] (m?) to E,,[p] to assess the
relationship between electricity generation and HPP WFs.

3.6. Upscaling the most water-efficient technology

A scenario in which the most water-efficient hydropower plant
(MEHP) replaces HPPs in the current Ecuadorian electricity mix, theo-
retically reduces the WF related to Ecuador's electricity production.
Nonetheless, this also affects the electricity system itself and the tempo-
ral WF variation, considering only the implications of reservoir water
management, excluding infrastructural changes. We assessed the effect
of this scenario on the current electricity system in eight steps.

Step 12 estimated the MEHP and Step 13 monthly electricity gener-
ation of a theoretical mix using MEHP technology, E,[a] (P]), as:

Emla] = Em[MEHP]  f ©)

where E,,[MEHP] is the monthly E,,,[p] for the selected MEHP, and f; is a
scaling factor. For f;, we assumed that electricity production corre-
sponds to a linear MEHP electricity production increase to provide the
current annual electricity production:

£ Soney Emld]

Y2 En[MEHP| ©

Data on E,[c] consisted of the 2017's monthly electricity production
of all on-grid power plants from ARCONEL (2019).

Step 14 calculated monthly WFs, WF,,[a] (m>) per month m, of the
theoretical mix of the MEHP technology as:

WEFp[a] = WFy[MEHP) = f, (7)

where, WF,,| MEHP] is the WF,;,[p] from Step 8 per MEHP.

Step 15 calculated the annual WF, WF,[a] (m?/year) of the mix by ag-
gregating the WF,[a] to complete a year.

Step 16 compared the Ex,[a], the Ey[c], the WF,[a] and the current
annual blue WF of electricity, WF,[c] (m?).

Step 17 estimated the theoretical monthly electricity generation, E,,
[o] (PJ), when the MEHP technology is used in both basins as:

En[o] = Em[pac] « f[pac] + Em[ama] « f [ama] (8)

where E,[pac] and f;[pac] refer to the monthly electricity production
and the scaling factor of the MEHP in the Pacific basin, and E,;Jama]
and f;Jama] in the Amazon basin. Differences in water availability be-
tween the basins cause variation of monthly electricity production and
scaling factors. The MEHP determined in Step 12 is located in only one
of the basins. To find temporal variation and electricity output, we
used the most similar HPP to the MEHP in the other basin using the in-
ventory of Vaca-Jiménez et al. (2019a). Appendix D gives the MEHP se-
lection for the other basin. Data on E,;Jama] and E,;[pac] were derived
from ARCONEL (2019).

The theoretical system has the same annual electricity production
than the current on-grid electricity mix. We assumed there are HPPs
in the two basins, making the definition of fi[pac] and f;Jama] more

complex. The relationship between them is as follows:

3n2:1 Em[c]

rt Emlc]
j— m ] =
f[pac] +2 1 (Emlama]) + fJama]

0 Emlpac) 32 Emlc)—

9)

The definition of f[pac] and f;|ama] was made by an iterative process
based on the minimization of the months of the year in which the E,[0]
cannot fulfill the E;[c]. To optimize HPP electricity production, we used
the difference in water availability in the basins. Appendix E describes
the optimization process to assess f;[pac] and f;[ama].

Step 18 calculated the WF, WF,,[o] (m?/month) per month m, for the
MEHP technology in the Amazon and Pacific basin as:

WF 0] = WFnelpac] * En[pac] + WFn e [ama] = Eiy[amal] (10)

The case study defines the MEHP from either the Pacific or the Am-
azon basin. Similarly to Step 17, to define the WF of the MEHP in the
other basin, we used data of the most similar HPP to the MEHP in the
other basin. Thus, either WF,,, ([pac] or WF,, ([ama] is the WF,, .[p] de-
fined in Step 9 for the selected MEHP; the other is derived from Vaca-
Jiménez et al. (2019a).

Finally, Step 19 compared the E,[0], the E;[c], and WF;;;[o] with the
current electricity blue WF per month m, WFy[c] (m?).

4. Results
4.1. Temporal variation of Open Water Surface size

Fig. 3a-d shows the results of the DEM, giving the annual variation of
the OWS sizes of the four HPPs that represent four different hydropower
categories. It shows the maximum and minimum surface size based on
daily HPP head data from 2008 to 2018. Fig. 3a-d shows the differences
between HPPs with Flooded lakes (Marcel Laniado and Saucay, Fig. 3a-c)
and Flooded Rivers (Mazar and Paute, Fig. 3b-d). Flooded Lakes have a
wider OWS than Flooded Rivers. When the size varies, Flooded Lakes in-
crease in length and width, covering a larger area. Conversely, as Flooded
Rivers are constrained by mountains, size variation is mainly seen as an
increase of flooded area length rather than width.

Fig. 4a-d shows temporal HPP OWS size variation compared to the
areas in the GRanD database (Lehner et al., 2011), and from Vaca-
Jiménez et al. (2019a), who used GIS. DH > GSH HPPs show larger tem-
poral OWS size variation than the two DH < GSH HPPs. Marcel Laniado
(Fig. 4a) has the largest variation with a more than two-fold difference
between the maximum and minimum OWS size. Together, Saucay's res-
ervoirs have the smallest size of the four cases and a 12% difference be-
tween the maximum and minimum size.

Fig. 4a-d also shows differences between the OWS' sizes reported in
the other databases and the ones estimated in this study. For instance,
Fig. 4b and d show that the GRanD's area is smaller than the estimated
area in this study, or the one from Vaca-Jiménez et al. (2019a). Fig. 4b
and d show that Mazar and Paute's OWSs mostly vary in length. Proba-
bly the GRanD database includes OWSs from the dry season, causing the
difference, but there is no common trend for all four HPP types.

4.2. Daily evaporation from hydropower open water surfaces

Fig. 5a-d shows differences between HPP OWS evaporation when a
variable or constant OWS area is considered. Reservoir evaporation is
underestimated for three of the four cases using the constant approach
(Fig. 5b—d). For Paute (DH > GSH - Flooded river), underestimation is
58 to 72%, for Saucay (DH < GSH - Flooded Lake) 39 to 47%, and for
Paute (DH < GSH - Flooded River), 46 to 55%. Underestimation is mainly
due to the assumption of previous studies that the OWS is half-full most
of the time. For DH < GSH HPPs, if the assumption of a maximum OWS is
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Digital Elevation Model of the Open Water Surfaces
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Fig. 3. a-d. Digital elevation model (DEM) of the Open Water Surfaces of the four hydropower plants (HPPs) studied, showing maximum and minimum areas based on daily HPP head data
from 2008 to 2018. a) Marcel Laniado hydropower plant (HPP), which Dam height (DH) is larger than its Gross Static Head (GSH), its reservoir forms a Flooded Lake, b) Mazar HPP, DH
> GSH, the reservoir forms a Flooded River, c) Saucay HPP, (DH < GSH), with Flooded Lake, and d) Paute HPP, DH < GSH, Flooded river. Note: Saucay hydropower plant has two dams with

two non-connected reservoirs: El Labrado and Chanlud.

not considered, the underestimation may be corrected. It seems that for
these cases, previous studies that have suggested that considering the
reservoir full overestimates WFs are not correct (Hogeboom et al.,
2018; Liu et al., 2015; Mekonnen and Hoekstra, 2012). The same cannot
be said about DH > GSH HPPs. For instance, Marcel Laniado (DH > GSH -
Flooded Lake), shows a different case as the monthly WF is
overestimated (up to 63%) and underestimated (down to 28%) depend-
ing on the time of the year.

Fig. 5a-d shows significant evaporation pattern differences be-
tween cases. Climate dynamics in relation to the OWS size play a
role in evaporation variation. For instance, Marcel Laniado has the
largest variation of the four, especially from October to March,
also because it has the largest temporal OWS variation. Similarly,
Mazar has large evaporation from September to February. Evapora-
tion patterns of DH < GSH HPPs are similar for both technologies,
but with different magnitudes. Fig. 5a-d also shows large differ-
ences between the evaporation of HPPs' OWSs. Marcel Laniado
has the largest water volumes evaporated, Saucay the smallest. De-
spite having both Flooded Lakes, the variation is caused by large
OWS size differences. The Marcel Laniado's OWS is 400 times larger
than Saucay's.

4.3. Water footprints of hydropower plants

Fig. 6a-d shows large monthly blue WF variation per unit of electric-
ity of four groups of hydropower plants. The maximum monthly blue
WF of Marcel Laniado is three times larger than the minimum,; for
Mazar, the maximum is 2.5 times larger than the minimum; for Saucay,
the difference is a factor of 1.7 and for Paute 2.4. Fig. 5a-d showed that
WEF variation is related to OWS evaporation variation. Marcel Laniado
has the largest annual evaporation variation, and also the largest WF
variation.

Fig. 6a-d also shows that the HPP with the largest monthly and an-
nual blue WFs is Marcel Laniado, followed by Saucay, Mazar, and finally,
Paute.

4.4. Variable dynamics affecting hydropower water footprints

Fig. 7a-d shows the temporal variation of the OWS size in relation to
reservoir evaporation rates. Marcel Laniado has the largest evaporation
rates. This HPPs is the only one in the Ecuadorian lowlands, with higher
temperatures, smaller wind speeds, and larger solar radiation levels
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Temporal variation of the size of the Open Water Surfaces
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Fig. 4. a-d. Temporal Open Water Surface size variation of four hydropower plants and their relation to the areas in the GRanD database (Lehner et al., 2011), and in Vaca-Jiménez et al.
(2019a) that used Geographic Information Systems (GIS). a) Marcel Laniado hydropower plant (HPP), which Dam height (DH) is larger than its Gross Static Head (GSH), and which
reservoir forms a Flooded Lake, b) Mazar HPP, DH > GSH, which reservoir forms a Flooded River, c) Saucay HPP, (DH < GSH), with Flooded Lake, and d) Paute HPP, DH < GSH, Flooded
river. Note: Saucay's reservoir does not appear in the GRanD, only in Vaca-Jiménez et al. (2019a).

than in the highlands. These climatic factors cause relatively large evap-
oration rates.

Moreover, Fig. 7c-d shows that for DH < GSH HPPs, evaporation is
smallest when the OWS area is largest, and vice-versa. The combination
of large evaporation and small areas is an expected outcome of a dy-
namic system, as there is a direct relationship between the dry season
and smaller water inputs into the reservoir. However, for DH > GSH

HPPs (Fig. 7a-b) the relationship of these factors differs. For Marcel
Laniado and Mazar, the largest OWS does not coincide with the smallest
evaporation, as there is a delay of over a month. Large surface areas do
not always relate to smaller evaporation rates if HPPs decrease their
water outflow to store water for dry months, causing a delay of the
size-evaporation temporal relationship. Conversely, HPPs with DH <
GSH do not have this delay as they only store water for a few days.

Daily evaporation from Open Water Surfaces of Hydropower plants
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Fig. 5. a-d. Daily Open Water Surface evaporation for four cases considering a variable area or a constant area. a) Marcel Laniado hydropower plant (HPP), which Dam height (DH) is larger
than its Gross Static Head (GSH), the reservoir forms a Flooded Lake, b) Mazar HPP, DH > GSH, the reservoir forms a Flooded River, c) Saucay HPP, (DH < GSH), with Flooded Lake, and

d) Paute HPP, DH < GSH, with Flooded river.
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Monthly blue WF per unit of electricity generated of Hydropower plants
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Fig. 6. a-d. Monthly blue WF variation per unit of electricity of four hydropower plants. a) Marcel Laniado hydropower plant (HPP), which Dam height (DH) is larger than its Gross Static
Head (GSH), the reservoir forms a Flooded Lake, b) Mazar HPP, DH > GSH, the reservoir forms a Flooded River, c) Saucay HPP, (DH < GSH), with Flooded Lake, and d) Paute HPP, DH < GSH,

with Flooded river.

This implies that some HPPs have relatively large OWS areas and signif-
icant evaporation rates, translating into relatively large evaporation.
Fig. 8a-d shows the temporal daily OWS evaporation variation and
its relationship with the HPP electricity output. The largest electricity
output of DH < GSH HPPs coincide with relatively small OWS evapora-
tion (from April to July for Saucay, and from May to July for Paute).
This is why these HPPs have the lowest WF in these periods (Fig. 6b—
d). However, Fig. 8a-d also shows that for DH > GSH HPPs with large

storage capacities, electricity output is not inversely related to OWS
evaporation. For example, Marcel Laniado has the largest electricity out-
put from March to May. During these periods, its OWS also has relatively
large evaporation. From June to August, Mazar experiences a similar ef-
fect. DH > GSH HPP management prioritizes water storage over maxi-
mizing electricity output, aiming for more stable electricity output,
translating into relatively large WFs during periods with large evapora-
tion. Energy management may have a larger effect on WF dynamics

Temporal variation of the size of the area and the evaporation rates in the Open Water Surfaces
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Fig. 7. a-d. Temporal Open Water surface variation and evaporation rates of four types of Ecuadorian Hydropower plants. a) Marcel Laniado hydropower plant (HPP), which Dam height
(DH) is larger than its Gross Static Head (GSH), the reservoir forms a Flooded Lake, b) Mazar HPP, DH > GSH, the reservoir forms a Flooded River, c) Saucay HPP, (DH < GSH), with Flooded

Lake, and d) Paute HPP, DH < GSH, with Flooded river.
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Electricity output of the Hydropower plants and the daily evaporation from their Open Water Surfaces
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Fig. 8. a-d. Temporal variation of the daily open water surface evaporation and electricity output of four hydropower plants. a) Marcel Laniado hydropower plant (HPP), which Dam height
(DH) is larger than its Gross Static Head (GSH), and which reservoir forms a Flooded Lake, b) Mazar HPP, DH > GSH which reservoir forms a Flooded River, ¢) Saucay HPP, (DH < GSH), with

Flooded Lake, and d) Paute HPP, DH < GSH, Flooded river.

than climate variability. Mazar and Paute are situated close to each
other and have the same climate. However, the use of the OWS is differ-
ent. Mazar's reservoir stores water to overcome dry periods, while
Paute's reservoir maximizes electricity output, causing different WF
dynamics.

Comparing Fig. 8a-d and Fig. 6a-d, differences between the tempo-
ral WF variation of the four HPPs becomes clear. Fig. 8a-b shows that the
monthly blue WF variation of DH > GSH HPPs, observed in Fig. 6a-b, is
due to large OWS evaporation variation rather than electricity produc-
tion variation. WF variation of DH < GSH HPPs is due to electricity pro-
duction variation rather than OWS evaporation variation.

4.5. Upscaling the most water-efficient HPP technology
Paute HPP, in the Amazon basin, have the smallest annual and

monthly WFs per unit of electricity generated (Fig. 6a-d), and the sec-
ond smallest OWS size variation (Fig. 4a-d). Therefore, for this case

a) Electricity production with the most water-
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study, the DH < GSH, Flooded River technology is considered as the
MEHP.

Fig. 9a-b shows Ecuador's electricity production and its related an-
nual blue WF if the MEHP is scaled up to replace existing HPP infrastruc-
ture, and it is deployed in the Amazon basin. Fig. 9b shows that the
annual WF of electricity production is reduced to 11% of the current
level while providing the same annual amount of electricity. However,
Fig. 9a shows that the temporal electricity production variation of this
technology (constrained by water availability in the Amazon basin) can-
not produce Ecuador's current monthly electricity demand during seven
months of the year, from September to March.

Considering water availability variation in the Amazon and Pacific
basin, HPPs in the Pacific can back up reduced electricity production in
the Amazon during part of its dry season. Fig. 10a-b shows Ecuador's
electricity generation and related WF when the MEHP is scaled up to re-
place existing HPP infrastructure in the two basins. In comparison to
Fig. 93, Fig. 10a shows how DH < GSH, Flooded River HPPs in the Pacific
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Fig. 9. a-b. Electricity production of Ecuador (a), and its related annual WF (b), if the most water-efficient hydropower technology is scaled up to replace existing infrastructure, and de-

ployed in the Amazon basin. The current case is based on (Vaca-Jiménez et al., 2019b).
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Fig. 10. a-b. Electricity production of Ecuador (a), and its monthly blue WF (b), if the most water-efficient hydropower technology is scaled up to replace the existing infrastructure (in-
cluding other electricity-generating technologies as thermal power plants) in the Amazon and Pacific basin. Note: The current monthly blue WF is based on Vaca-Jiménez et al. (2019b).

basin could contribute to electricity production and provide electricity
for seven months per year, while the total blue electricity WF remains
the same (Fig. 10b). Water availability differences between the basins
can be used to maximize HPP electricity production throughout the
year, although Ecuador still needs other electricity generating technolo-
gies to produce sufficient electricity from September to January.

Fig. 10b shows that a shift to DH < GSH - Flooded River HPPs implies a
change in the WF dynamics of electricity generation as the monthly blue
WEF variation is smaller than today. This can have beneficial effects on
water availability in the country, as there is an offset of electricity as a
water competitor from July to October.

5. Discussion
5.1. Implications of open water surfaces variation for WFs

So far, research has excluded HPP OWS size variation, estimating the
uncertainty of this assumption using ranges to avoid WF under and
overestimation. Our findings suggest that excluding size variation intro-
duces WF underestimations. For Ecuador, the constant approach trans-
lates into evaporation underestimation of 10 to 80%. Future studies
might include temporal variation because water availability and elec-
tricity generation are part of a dynamic system. However, the uncer-
tainty of WF estimations of previous studies is not only due to the use
of the constant approach. Two other factors are:

(i) The assumption that the OWS is half-empty. Previous studies as-
sumed there is a WF overestimation as the OWS temporal varia-
tion implied smaller sizes (Herath et al., 2011; Liu et al., 2015;
Mekonnen and Hoekstra, 2012). As a response, Hogeboom et al.
(2018) introduced a correcting factor for OWS sizes. Our results
show that depending on the type of HPP, this assumption
might underestimate HPP WFs by half. HPP differences and dif-
ferences in operation and infrastructure are the reason that gen-
eralizations should be made with great care.

Lack of temporal information in OWS's databases. Sources like
the GRanD database give information on HPP OWS sizes and
shapes (Lehner et al., 2011), giving average, theoretical and max-
imum OWS sizes based on different data sources, prioritizing
measurements from satellite images. However, in some cases,
measurements are based on information for only one day. If sat-
ellite images correspond to a day where the OWS size is below
average, the size is underestimated, and so is the WF. This is
likely the case for Ecuadorian OWS's, as satellite imaging is
clearer in the dry season due to fewer clouds. To avoid this bias,

(i

=

we suggest that future studies measure OWS sizes based on sat-
ellite imaging, using pictures from more days, in different years
and seasons. In this way, even when the constant approach is
used, climate and energy planning variables are averaged, reduc-
ing uncertainty.

5.2. Energy management and geography influence on WFs

Existing studies have assessed climate and technology effects on HPP
WEFs (Coelho et al., 2017; Gleick, 1992; Herath et al., 2011; Hogeboom
et al., 2018; Liu et al., 2015; Mekonnen and Hoekstra, 2012; Scherer
and Pfister, 2016). When system dynamics are also considered, there
are two other factors significantly affecting HPP WFs: energy manage-
ment and geography. Energy management deciding on electricity out-
put and water storage might have a larger effect on temporal
evaporation variation than climate. Temporal WF variations of HPPs
with relatively large storage are larger than WFs of HPPs with smaller
storage. For most HPPs, the goal of water storage is to make power pro-
duction flexible, especially during dry periods. However, the longer
water is stored in the OWS, the larger the evaporation is, causing a
tradeoff between reducing WFs or securing a reliable energy supply. Fu-
ture studies might include this storage-evaporation-electricity genera-
tion tradeoff considering temporal variations for a larger range of
HPPs storage capacities.

Aiming for small WFs is not necessarily the best option. Previous
studies like Coelho et al. (2017), Liu et al. (2015), or Scherer and
Pfister (2016), addressed the system from a water management per-
spective focusing on the effect that HPP reservoirs have on the hydro-
sphere. Mekonnen et al. (2016) and Mekonnen and Hoekstra (2012),
have indicated that it is more efficient to allocate water to water-
efficient electricity generating technologies, e.g., wind, solar, or geother-
mal power plants. Bakken et al. (2016a), Gleick (1992) and Vaca-
Jiménez et al. (2019a) have shown that there are less water-intensive
HPP technologies, e.g., RORs with smaller WFs per unit of electricity
than HPPs with Flooded Lakes. All studies favored the smallest WF. How-
ever, when the electricity perspective is included, and energy manage-
ment is considered, the smallest WFs do not always go along with the
best technology and do not guarantee sufficient and reliable electricity
production. One of the main advantages of HPPs compared to other re-
newable energy technologies is their storage, which is paramount for a
transition towards low-carbon electricity generation (Soria et al., 2015).
The discussion should not focus merely on the best water-efficiency but
consider both energy and water perspectives to suggest pathways
forward.
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Geography also has an important role in OWS water evaporation
variation. HPPs in between mountains have deeper and narrower
flooded areas, resulting in smaller WFs (Liu et al., 2015; Vaca-Jiménez
etal, 2019a). We also found this effect on the OWS temporal WF varia-
tion. When the flooded area varies throughout the year, it is limited by
the geography, and therefore, the size change is smaller than for HPPs in
the highlands or lowlands with shallow and wide flooded areas.

5.3. Results in the context of other assessment methods

Besides the Gross WF method used in this study, there are three
other methods to estimate HPP WFs: (i) The Net WF method, relating
evaporation and electricity output, like the Gross WF, but considering
evaporation differences before and after HPP construction
(e.g., Bakken et al. (2016a) and Herath et al. (2011)). (ii) The Water Bal-
ance WF method, considering reservoir water input-output and elec-
tricity output, e.g., Coelho et al. (2017) and Herath et al. (2011),
assuming precipitation cached by the reservoir is the input and evapo-
ration the output. And (iii) the Scarcity WF method, considering a reser-
voir water balance, including evaporation differences between pre- and
post-HPP construction, relating to available water flows at the HPP loca-
tion, e.g., Scherer and Pfister (2016).

Different methods to calculate the WF serve different purposes. We
used the Gross Method as it relates water evaporation and electricity
output directly, permitting us to use available data and to compare
our results with results from earlier studies that used the same method
but were based on the OWS constant approach. Despite the method
used, OWS evaporation determines HPP WFs, and therefore, the com-
parison of results is not limited to studies based on the Gross Method
only. We have shown that OWS evaporation has large temporal varia-
tion due to the dynamics between the operational and climate factors
of the HPP. Our study contributes to a better understanding of the
OWS temporal variation, energy management, and WFs.

Our study also shows how OWS temporal variation affects WF values
estimated by other methods. For instance, OWS temporal variation will
likely affect results from the Water Balance and the Water Scarcity
method in a similar way, because precipitation water input of the sys-
tem will also vary. The larger the OWS, the larger the precipitation cap-
tured, and vice-versa. Interesting dynamics may emerge between the
temporal variation of water input and output using these methods
when OWS variation is considered. OWS temporal variation will also af-
fect the Net method because the temporal OWS size variation implies a
change in the pre-flooding area considered, indicating that there is a
constant land-use change by reservoir areas that flood seasonally. The
comparison between methods considering the temporal variation of
the OWS should be addressed in future studies.

5.4. Limitations of the study

We grouped Ecuadorian dammed HPPs into four classes, which
cover a large range of possible physical and operational HPP conditions.
The findings do not represent all HPPs in the global electricity mix due
to climate and infrastructure differences. Our results reflect HPPs in
countries with equatorial and subtropical climates, e.g., in Colombia,
Brazil, or Peru. Countries in higher latitudes or with different climates
may have different relations between water storage, climate, and WFs.
In some countries, temporal climate variation is more extreme than in
Ecuador (WATCH, 2019), with a larger effect on temporal WF variation
than water storage. Future studies might use similar approaches to as-
sess HPP WFs for different climates. The study only assessed four cases
(one per class). Future studies might include other cases to assess
ranges and trends.

The major limitation of this study is the estimation of the DEM of the
OWS because there are uncertainties in data precision, especially for
areas flooded most of the year. We assumed this uncertainty is not sig-
nificant, as it might affect the OWS water volume estimation more than

the area size. Another limitation was the lack of daily electricity produc-
tion data per power plant. This hindered the possibility of making daily
WEF assessments per unit of electricity produced.

Finally, the simple scenario analysis showing MEHP impact on the
electricity system and WF is theoretical and excludes complexities in-
volved in energy management, the feasibility of resources, or infrastruc-
ture change. This simplification may be practically unfeasible but helps
to show the implications of aiming for the smallest WF constructing
HPPs that do not use their full OWS storage capacity. The smallest WF
scenario shows the storage-evaporation-electricity generation tradeoff.

6. Conclusions

This study assessed WFs of four different groups of hydropower
plants, considering the temporal variation of Open Water Surface
sizes, using a Digital Elevation Model and historical data of Gross Static
Heads. There are large differences among HPP WFs. Important factors in-
clude variation of climate, electricity production, and Open Water Sur-
face size. HPP operation management, geographical features, and local
climate determine temporal differences, defining the system dynamics.
Excluding Open Water Surface sizes causes an underestimation of the
annual WF by 10% for HPPs with Flooded Lakes, to 80% for HPPs with
Flooded Rivers.

The larger the storage capacity, the larger is the evaporation from the
HPP reservoir due to the combination of low electricity output, rela-
tively large evaporation rates, and large reservoir size. Counterintui-
tively, there is a need to reduce HPP storage capacity to reduce water
consumption. This brings an additional tradeoff to consider in the dis-
cussion about the possible energy transition paths, as storage capacity
is one of the factors that make hydropower more advantageous over
other renewable technologies, such as solar or wind. HPPs with dam
heights below the Gross Static Head, and OWSs forming a Flooded River
are the most water-efficient hydropower technologies because water
storage is limited and evaporation losses relatively small. However,
when this technology is scaled-up to replace the current Ecuadorian hy-
dropower infrastructure, the lack of water storage translates into the
impossibility to fulfill current electricity production. Although this tech-
nology is less water-intensive, its electricity production depends on
water availability, and therefore, it lacks flexibility. The system dynam-
ics suggest that the aim for the smallest WF is not always the best option
from an energy and water perspective. Despite hydropower consumes
water, it is a renewable energy technology that has the advantage that
it can store energy so that it might have a role in the future energy mix.
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Glossary

DH: dam height, considered from the base to the top of the dam (in m)

DEM: digital Elevation Model. 3D model of the open water surface

HPP: hydropower plant

GSH: Gross Static Head (in m). The vertical distance from the open water surface to the top
of the water in the tailrace (at the discharge)

MEHP: most water-efficient hydropower plant

ROR: run-of-the-river hydropower plants

OWS: Open Water Surface

WEF: water footprint
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