164 research outputs found
The Normal State Resistivity of Grain Boundaries in YBa2Cu3O7-delta
Using an optimized bridge geometry we have been able to make accurate
measurements of the properties of YBa2Cu3O7-delta grain boundaries above Tc.
The results show a strong dependence of the change of resistance with
temperature on grain boundary angle. Analysis of our results in the context of
band-bending allows us to estimate the height of the potential barrier present
at the grain boundary interface.Comment: 11 pages, 3 figure
Quantum and Topological Criticalities of Lifshitz Transition in Two-Dimensional Correlated Electron Systems
We study electron correlation effects on quantum criticalities of Lifshitz
transitions at zero temperature, using the mean-field theory based on a
preexisting symmetry-broken order, in two-dimensional systems. In the presence
of interactions, Lifshitz transitions may become discontinuous in contrast to
the continuous transition in the original proposal by Lifshitz for
noninteracting systems. We focus on the quantum criticality at the endpoint of
discontinuous Lifshitz transitions, which we call the marginal quantum critical
point. It shows remarkable criticalities arising from its nature as a
topological transition. At the point, for the canonical ensemble, the
susceptibility of the order parameter chi is found to diverge as ln 1/|delta
Delta| when the ``neck'' of the Fermi surface collapses at the van Hove
singularity. More remarkably, it diverges as 1/|delta Delta| when the
electron/hole pocket of the Fermi surface vanishes. Here delta Delta is the
amplitude of the mean field measured from the Lifshitz critical point. On the
other hand, for the grand canonical ensemble, the discontinuous transitions
appear as the electronic phase separation and the endpoint of the phase
separation is the marginal quantum critical point. Especially, when a pocket of
the Fermi surface vanishes, the uniform charge compressibility kappa diverges
as 1/|delta n|, instead of chi, where delta n is the electron density measured
from the critical point. Accordingly, Lifshitz transition induces large
fluctuations represented by diverging chi and/or kappa. Such fluctuations must
be involved in physics of competing orders and influence diversity of strong
correlation effects.Comment: 16 pages, 15 figures, to appear in Jounal of the Physical Society of
Japa
Synthesis of the polymerizable room temperature ionic liquid AMPS – TEA and superabsorbency for organic liquids of its copolymeric gels with acrylamide
A polymerizable room temperature ionic liquid (RTIL), 2-acrylamido-2-methyl-1-propane sulfonic acid (AMPS) – triethylamine (TEA), was synthesized by neutralization of AMPS with TEA in acetone followed by evaporation of the solvent under a reduced pressure at room temperature. The RTIL was characterized with fourier transform infrared spectroscopy, differential scanning calorimetry (DSC), and 1H NMR. Co-polymeric gels of the RTIL with acrylamide (AAm) were prepared by aqueous solution polymerization using N,N′-methylenebisacrylamide as a crosslinker, and ammonium persulfate as an initiator. Superabsorbency of the gels in aqueous and a series of organic liquids was investigated gravimetrically. DSC data showed that the glass transition temperature of AMPS – TEA was 59.4 °C. Poly (AMPS – TEA-co-AAm) gels exhibited superabsorbency in both water and a series of organic solvents. The mechanism for swelling in aqueous and organic media of the gels was critically discussed
Brain architecture in the terrestrial hermit crab Coenobita clypeatus (Anomura, Coenobitidae), a crustacean with a good aerial sense of smell
<p>Abstract</p> <p>Background</p> <p>During the evolutionary radiation of Crustacea, several lineages in this taxon convergently succeeded in meeting the physiological challenges connected to establishing a fully terrestrial life style. These physiological adaptations include the need for sensory organs of terrestrial species to function in air rather than in water. Previous behavioral and neuroethological studies have provided solid evidence that the land hermit crabs (Coenobitidae, Anomura) are a group of crustaceans that have evolved a good sense of aerial olfaction during the conquest of land. We wanted to study the central olfactory processing areas in the brains of these organisms and to that end analyzed the brain of <it>Coenobita clypeatus </it>(Herbst, 1791; Anomura, Coenobitidae), a fully terrestrial tropical hermit crab, by immunohistochemistry against synaptic proteins, serotonin, FMRFamide-related peptides, and glutamine synthetase.</p> <p>Results</p> <p>The primary olfactory centers in this species dominate the brain and are composed of many elongate olfactory glomeruli. The secondary olfactory centers that receive an input from olfactory projection neurons are almost equally large as the olfactory lobes and are organized into parallel neuropil lamellae. The architecture of the optic neuropils and those areas associated with antenna two suggest that <it>C. clypeatus </it>has visual and mechanosensory skills that are comparable to those of marine Crustacea.</p> <p>Conclusion</p> <p>In parallel to previous behavioral findings of a good sense of aerial olfaction in C. clypeatus, our results indicate that in fact their central olfactory pathway is most prominent, indicating that olfaction is a major sensory modality that these brains process. Interestingly, the secondary olfactory neuropils of insects, the mushroom bodies, also display a layered structure (vertical and medial lobes), superficially similar to the lamellae in the secondary olfactory centers of <it>C. clypeatus</it>. More detailed analyses with additional markers will be necessary to explore the question if these similarities have evolved convergently with the establishment of superb aerial olfactory abilities or if this design goes back to a shared principle in the common ancestor of Crustacea and Hexapoda.</p
Measuring anisotropic scattering in the cuprates
A simple model of anisotropic scattering in a quasi two-dimensional metal is
studied. Its simplicity allows an analytic calculation of transport properties
using the Boltzmann equation and relaxation time approximation. We argue that
the c-axis magnetoresistance provides the key test of this model of transport.
We compare this model with experiments on overdoped Tl-2201 and find reasonable
agreement using only weak scattering anisotropy. We argue that optimally doped
Tl-2201 should show strong angular-dependent magnetoresistance within this
model and would provide a robust way of determining the in-plane scattering
anisotropy in the cuprates.Comment: 12 pages, 8 figures, typset in REVTeX 4. Version 2; added references
and corrected typo
Ferromagnetism and Superconductivity in Uranium Compounds
Recent advances on ferromagnetic superconductors, UGe2, URhGe and UCoGe are
presented. The superconductivity (SC) peacefully coexists with the
ferromagnetism (FM), forming the spin-triplet state of Cooper pairs. The
striking new phenomena, such as SC reinforced by the magnetic field, are
associated with Ising-type ferromagnetic fluctuations. A variety of
ferromagnetic ordered moments between UGe2, URhGe and UCoGe affords to
understand the relation between FM, tricriticality and SC.Comment: 11 pages, 16 figures, accepted for publication in J. Phys. Soc. Jpn.
as a review article of Special Topics of "Recent developments in
superconductivity
Reducing extrinsic hysteresis in first-order La(Fe,Co,Si)13 magnetocaloric systems
Reducing extrinsic hysteresis in first-order la (Fe,Co,Si)13 magnetocaloric system
Optical Sum Rule in Finite Bands
In a single finite electronic band the total optical spectral weight or
optical sum carries information on the interactions involved between the charge
carriers as well as on their band structure. It varies with temperature as well
as with impurity scattering. The single band optical sum also bears some
relationship to the charge carrier kinetic energy and, thus, can potentially
provide useful information, particularly on its change as the charge carriers
go from normal to superconducting state. Here we review the considerable
advances that have recently been made in the context of high oxides, both
theoretical and experimental.Comment: Review article accepted for publication in J. Low Temp. Phys. 29
pages, 33 figure
In vitro and in vivo studies on biocompatibility of carbon fibres
In the present study we focused on the in vitro and in vivo evaluation of two types of carbon fibres (CFs): hydroxyapatite modified carbon fibres and porous carbon fibres. Porous CFs used as scaffold for tissues regeneration could simultaneously serve as a support for drug delivery or biologically active agents which would stimulate the tissue growth; while addition of nanohydroxyapatite to CFs precursor can modify their biological properties (such as bioactivity) without subsequent surface modifications, making the process cost and time effective. Presented results indicated that fibre modification with HAp promoted formation of apatite on the fibre surface during incubation in simulated body fluid. The materials biocompatibility was determined by culturing human osteoblast-like cells of the line MG 63 in contact with both types of CFs. Both tested materials gave good support to adhesion and growth of bone-derived cells. Materials were implanted into the skeletal rat muscle and a comparative analysis of tissue reaction to the presence of the two types of CFs was done. Activities of marker metabolic enzymes: cytochrome c oxidase (CCO) and acid phosphatase were examined to estimate the effect of implants on the metabolic state of surrounding tissues. Presented results evidence the biocompatibility of porous CFs and activity that stimulates the growth of connective tissues. In case of CFs modified with hydroxyapatite the time of inflammatory reaction was shorter than in case of traditional CFs
In Silico Evidence for Gluconeogenesis from Fatty Acids in Humans
The question whether fatty acids can be converted into glucose in humans has a long standing tradition in biochemistry, and the expected answer is “No”. Using recent advances in Systems Biology in the form of large-scale metabolic reconstructions, we reassessed this question by performing a global investigation of a genome-scale human metabolic network, which had been reconstructed on the basis of experimental results. By elementary flux pattern analysis, we found numerous pathways on which gluconeogenesis from fatty acids is feasible in humans. On these pathways, four moles of acetyl-CoA are converted into one mole of glucose and two moles of CO2. Analyzing the detected pathways in detail we found that their energetic requirements potentially limit their capacity. This study has many other biochemical implications: effect of starvation, sports physiology, practically carbohydrate-free diets of inuit, as well as survival of hibernating animals and embryos of egg-laying animals. Moreover, the energetic loss associated to the usage of gluconeogenesis from fatty acids can help explain the efficiency of carbohydrate reduced and ketogenic diets such as the Atkins diet
- …