5 research outputs found

    Resistance to ursodeoxycholic acid-induced growth arrest can also result in resistance to deoxycholic acid-induced apoptosis and increased tumorgenicity

    Get PDF
    BACKGROUND: There is a large body of evidence which suggests that bile acids increase the risk of colon cancer and act as tumor promoters, however, the mechanism(s) of bile acids mediated tumorigenesis is not clear. Previously we showed that deoxycholic acid (DCA), a tumorogenic bile acid, and ursodeoxycholic acid (UDCA), a putative chemopreventive agent, exhibited distinct biological effects, yet appeared to act on some of the same signaling molecules. The present study was carried out to determine whether there is overlap in signaling pathways activated by tumorogenic bile acid DCA and chemopreventive bile acid UDCA. METHODS: To determine whether there was an overlap in activation of signaling pathways by DCA and UDCA, we mutagenized HCT116 cells and then isolated cell lines resistant to UDCA induced growth arrest. These lines were then tested for their response to DCA induced apoptosis. RESULTS: We found that a majority of the cell lines resistant to UDCA-induced growth arrest were also resistant to DCA-induced apoptosis, implying an overlap in DCA and UDCA mediated signaling. Moreover, the cell lines which were the most resistant to DCA-induced apoptosis also exhibited a greater capacity for anchorage independent growth. CONCLUSION: We conclude that UDCA and DCA have overlapping signaling activities and that disregulation of these pathways can lead to a more advanced neoplastic phenotype

    Deoxycholic acid induces intracellular signaling through membrane perturbations

    No full text
    Secondary bile acids have long been postulated to be tumor promoters in the colon; however, their mechanism of action remains unclear. In this study, we examined the actions of bile acids at the cell membrane and found that they can perturb membrane structure by alteration of membrane microdomains. Depletion of membrane cholesterol by treating with methyl-β-cyclodextrin suppressed deoxycholic acid (DCA)-induced apoptosis, and staining for cholesterol with filipin showed that DCA caused a marked rearrangement of this lipid in the membrane. Likewise, DCA was found to affect membrane distribution of caveolin-1, a marker protein that is enriched in caveolae membrane microdomains. Additionally, fluorescence anisotropy revealed that DCA causes a decrease in membrane fluidity consistent with the increase in membrane cholesterol content observed after 4 h of DCA treatment of HCT116 cells. Significantly, by using radiolabeled bile acids, we found that bile acids are able to interact with and localize to microdomains differently depending on their physicochemical properties. DCA was also found to induce tyrosine phosphorylation and activate the receptor tyrosine kinase epidermal growth factor receptor in a ligand-independent manner. In contrast, ursodeoxycholic acid did not exhibit any of these effects even though it interacted significantly with the microdomains. Collectively, these data suggest that bile acid-induced signaling is initiated through alterations of the plasma membrane structure and the redistribution of cholesterol. © 2006 by The American Society for Biochemistry and Molecular Biology, Inc

    Thrombospondin-I is a critical modulator in non-alcoholic steatohepatitis (NASH).

    No full text
    Non-alcoholic fatty liver disease (NAFLD) is a progressive liver disease characterized by dysregulated lipid metabolism and chronic inflammation ultimately resulting in fibrosis. Untreated, NAFLD may progress to non-alcoholic steatohepatitis (NASH), cirrhosis and death. However, currently there are no FDA approved therapies that treat NAFLD/NASH. Thrombospondin-I (TSP-1) is a large glycoprotein in the extracellular matrix that regulates numerous cellular pathways including transforming growth factor beta 1 (TGF-β1) activation, angiogenesis, inflammation and cellular adhesion. Increased expression of TSP-1 has been reported in various liver diseases; however, its role in NAFLD/NASH is not well understood. We first examined TSP-1 modulation in hepatic stellate cell activation, a critical initiating step in hepatic fibrosis. Knockdown or inhibition of TSP-1 attenuated HSC activation measured by alpha smooth muscle actin (α-SMA) and Collagen I expression. To investigate the impact of TSP-1 modulation in context of NAFLD/NASH, we examined the effect of TSP-1 deficiency in the choline deficient L-amino acid defined high fat diet (CDAHFD) model of NASH in mice by assessing total body and liver weight, serum liver enzyme levels, serum lipid levels, liver steatosis, liver fibrosis and liver gene expression in wild type (WT) and TSP-1 null mice. CDAHFD fed mice, regardless of genotype, developed phenotypes of NASH, including significant increase in liver weight and liver enzymes, steatosis and fibrosis. However, in comparison to WT, CDAHFD-fed TSP-1 deficient mice were protected against numerous NASH phenotypes. TSP-1 null mice exhibited a decrease in serum lipid levels, inflammation markers and hepatic fibrosis. RNA-seq based transcriptomic profiles from the liver of CDAHFD fed mice determined that both WT and TSP-1 null mice exhibited similar gene expression signatures following CDAHFD, similar to biophysical and histological assessment comparison. Comparison of transcriptomic profiles based on genotype suggested that peroxisome proliferator activated receptor alpha (PPARα) pathway and amino acid metabolism pathways are differentially expressed in TSP-1 null mice. Activation of PPARα pathway was supported by observed decrease in serum lipid levels. Our findings provide important insights into the role of TSP-1 in context of NAFLD/NASH and TSP-1 may be a target of interest to develop anti-fibrotic therapeutics for NAFLD/NASH

    Docosahexaenoic acid supplementation fully restores fertility and spermatogenesis in male delta-6 desaturase-null mice

    No full text
    Delta-6 desaturase-null mice (−/−) are unable to synthesize highly unsaturated fatty acids (HUFAs): arachidonic acid (AA), docosahexaenoic acid (DHA), and n6-docosapentaenoic acid (DPAn6). The −/− males exhibit infertility and arrest of spermatogenesis at late spermiogenesis. To determine which HUFA is essential for spermiogenesis, a diet supplemented with either 0.2% (w/w) AA or DHA was fed to wild-type (+/+) and −/− males at weaning until 16 weeks of age (n = 3–5). A breeding success rate of DHA-supplemented −/− was comparable to +/+. DHA-fed −/− showed normal sperm counts and spermiogenesis. Dietary AA was less effective in restoring fertility, sperm count, and spermiogenesis than DHA. Testis fatty acid analysis showed restored DHA in DHA-fed −/−, but DPAn6 remained depleted. In AA-fed −/−, AA was restored at the +/+ level, and 22:4n6, an AA elongated product, accumulated in testis. Cholesta-3,5-diene was present in testis of +/+ and DHA-fed −/−, whereas it diminished in −/− and AA-fed −/−, suggesting impaired sterol metabolism in these groups. Expression of spermiogenesis marker genes was largely normal in all groups. In conclusion, DHA was capable of restoring all observed impairment in male reproduction, whereas 22:4n6 formed from dietary AA may act as an inferior substitute for DHA
    corecore