57 research outputs found
Nuclear spin relaxation by intramolecular interactions in gases of homonuclear diatomic molecules
The differential equations which describe the relaxation of macroscopic observables associated with nuclear spins in homonuclear diatomic molecules are derived using an expansion of the nuclear spin density matrix in terms of irreducible tensors. It is shown, using an intramolecular quadrupole mechanism, that the only difference between nuclear spin relaxation of the ortho- and para-species arises from the rotational states being restricted to odd and even values. This difference is vanishingly small at high temperatures so that the relaxation equations for nuclear magnetization become identical for both species. A previous paper predicting a difference even at high temperatures is shown to be in error and is corrected
Ground State Phase Diagram of S=1 XXZ Chains with Uniaxial Single-Ion-Type Anisotropy
One dimensional S=1 XXZ chains with uniaxial single-ion-type anisotropy are
studied by numerical exact diagonalization of finite size systems. The
numerical data are analyzed using conformal field theory, the level
spectroscopy, phenomenological renormalization group and finite size scaling
method. We thus present the first quantitatively reliable ground state phase
diagram of this model. The ground states of this model contain the Haldane
phase, large-D phase, N\'{e}el phase, two XY phases and the ferromagnetic
phase. There are four different types of transitions between these phases: the
Brezinskii-Kosterlitz-Thouless type transitions, the Gaussian type transitions,
the Ising type transitions and the first order transitions. The location of
these critical lines are accurately determined.Comment: 8 pages, 19 figure
Ageing, dynamical scaling and its extensions in many-particle systems without detailed balance
Recent studies on the phenomenology of ageing in certain many-particle
systems which are at a critical point of their non-equilibrium steady-states,
are reviewed. Examples include the contact process, the parity-conserving
branching-annihilating random walk, two exactly solvable particle-reaction
models and kinetic growth models. While the generic scaling descriptions known
from magnetic system can be taken over, some of the scaling relations between
the ageing exponents are no longer valid. In particular, there is no obvious
generalization of the universal limit fluctuation-dissipation ratio. The form
of the scaling function of the two-time response function is compared with the
prediction of the theory of local scale-invariance.Comment: Latex2e with IOP macros, 32 pages; extended discussion on contact
process and new section on kinetic growth processe
- …