43 research outputs found

    Van der Waals contribution to the inelastic atom-surface scattering

    Full text link
    A calculation of the inelastic scattering rate of Xe atoms on Cu(111) is presented. We focus in the regimes of low and intermediate velocities, where the energy loss is mainly associated to the excitation electron-hole pairs in the substrate. We consider trajectories parallel to the surface and restrict ourselves to the Van der Waals contribution. The decay rate is calculated within a self-energy formulation. The effect of the response function of the substrate is studied by comparing the results obtained with two different approaches: the Specular Reflection Model and the Random Phase Approximation. In the latter, the surface is described by a finite slab and the wave functions are obtained from a one-dimensional model potential that describes the main features of the surface electronic structure while correctly retains the image-like asymptotic behaviour. We have also studied the influence of the surface state on the calculation, finding that it represents around 50% of the total probability of electron-hole pairs excitation.Comment: 7 pages, 4 figure

    Ab initio study of the double row model of the Si(553)-Au reconstruction

    Full text link
    Using x-ray diffraction Ghose et al. [Surf. Sci. {\bf 581} (2005) 199] have recently produced a structural model for the quantum-wire surface Si(553)-Au. This model presents two parallel gold wires located at the step edge. Thus, the structure and the gold coverage are quite different from previous proposals. We present here an ab initio study using density functional theory of the stability, electronic band structure and scanning tunneling microscopy images of this model.Comment: Submitted to Surface Science on December 200

    Calculation of the optical response of C60 and Na8 using time-dependent density functional theory and local orbitals

    Full text link
    We report on a general method for the calculation of the frequency-dependent optical response of clusters based upon time-dependent density functional theory (TDDFT). The implementation is done using explicit propagation in the time domain and a self-consistent program that uses a linear combination of atomic orbitals (LCAO). Our actual calculations employ the SIESTA program, which is designed to be fast and accurate for large clusters. We use the adiabatic local density approximation to account for exchange and correlation effects. Results are presented for the imaginary part of the linear polarizability, Im [\alpha(w)], and the dipole strength function, S(w), of C60 and Na8, compared to previous calculations and to experiment. We also show how to calculate the integrated frequency-dependent second order non-linear polarizability for the case of a step function electric field, \gamma_{step}(w), and present results for C60.Comment: 11 pages with 6 postscript figures. Submitted for publicatio

    Search for a Metallic Dangling-Bond Wire on nn-doped H-passivated Semiconductor Surfaces

    Full text link
    We have theoretically investigated the electronic properties of neutral and nn-doped dangling bond (DB) quasi-one-dimensional structures (lines) in the Si(001):H and Ge(001):H substrates with the aim of identifying atomic-scale interconnects exhibiting metallic conduction for use in on-surface circuitry. Whether neutral or doped, DB lines are prone to suffer geometrical distortions or have magnetic ground-states that render them semiconducting. However, from our study we have identified one exception -- a dimer row fully stripped of hydrogen passivation. Such a DB-dimer line shows an electronic band structure which is remarkably insensitive to the doping level and, thus, it is possible to manipulate the position of the Fermi level, moving it away from the gap. Transport calculations demonstrate that the metallic conduction in the DB-dimer line can survive thermally induced disorder, but is more sensitive to imperfect patterning. In conclusion, the DB-dimer line shows remarkable stability to doping and could serve as a one-dimensional metallic conductor on nn-doped samples.Comment: 8 pages, 5 figure

    Characterization of single-molecule pentanedithiol junctions by inelastic electron tunneling spectroscopy and first-principles calculations

    Get PDF
    We study pentanedithiol molecular junctions formed by means of the break-junction technique with a scanning tunneling microscope at low temperatures. Using inelastic electron tunneling spectroscopy and first-principles calculations, the response of the junction to elastic deformation is examined. We show that this procedure makes a detailed characterization of the molecular junction possible. In particular, our results indicate that tunneling takes place through just a single molecule.Comment: 5 pages, 4 figures (accepted in Phys. Rev. B
    corecore