2 research outputs found

    Ammonia Decomposition in the Process Chain for a Renewable Hydrogen Supply

    Get PDF
    This review article deals with the challenge to identify catalyst materials from literature studies for the ammonia decomposition reaction with potential for application in large-scale industrial processes. On the one hand, the requirements on the catalyst are quite demanding. Of central importance are the conditions for the primary reaction that have to be met by the catalyst. Likewise, the catalytic performance, i.e., an ideally quantitative conversion, and a high lifetime are critical as well as the consideration of requirements on the product properties in terms of pressure or by-products for potential follow-up processes, in this case synthesis gas applications. On the other hand, the evaluation of the multitude of literature studies poses difficulties due to significant varieties in catalytic testing protocols

    Response to Comment on "Methane Pyrolysis for Zero-Emission Hydrogen Production: A Potential Bridge Technology from Fossil Fuels to a Renewable and Sustainable Hydrogen Economy"

    Get PDF
    Hydrogen plays a key role in many industrial applications and is currently seen as one of the most promising energy vectors. Many efforts are being made to produce hydrogen with zero CO2 footprint via water electrolysis powered by renewable energies. Nevertheless, the use of fossil fuels is essential in the short term. The conventional coal gasification and steam methane reforming processes for hydrogen production are undesirable due to the huge CO2 emissions. A cleaner technology based on natural gas that has received special attention in recent years is methane pyrolysis. The thermal decomposition of methane gives rise to hydrogen and solid carbon, and thus, the release of greenhouse gases is prevented. Therefore, methane pyrolysis is a CO2-free technology that can serve as a bridge from fossil fuels to renewable energies
    corecore