6 research outputs found

    Solving the Corner-Turning Problem for Large Interferometers

    Get PDF
    The so-called corner turning problem is a major bottleneck for radio telescopes with large numbers of antennas. The problem is essentially that of rapidly transposing a matrix that is too large to store on one single device; in radio interferometry, it occurs because data from each antenna needs to be routed to an array of processors that will each handle a limited portion of the data (a frequency range, say) but requires input from each antenna. We present a low-cost solution allowing the correlator to transpose its data in real time, without contending for bandwidth, via a butterfly network requiring neither additional RAM memory nor expensive general-purpose switching hardware. We discuss possible implementations of this using FPGA, CMOS, analog logic and optical technology, and conclude that the corner turner cost can be small even for upcoming massive radio arrays.Comment: Revised to match accepted MNRAS version. 7 pages, 4 fig

    Mapping our Universe in 3D with MITEoR

    Full text link
    Mapping our universe in 3D by imaging the redshifted 21 cm line from neutral hydrogen has the potential to overtake the cosmic microwave background as our most powerful cosmological probe, because it can map a much larger volume of our Universe, shedding new light on the epoch of reionization, inflation, dark matter, dark energy, and neutrino masses. We report on MITEoR, a pathfinder low-frequency radio interferometer whose goal is to test technologies that greatly reduce the cost of such 3D mapping for a given sensitivity. MITEoR accomplishes this by using massive baseline redundancy both to enable automated precision calibration and to cut the correlator cost scaling from N^2 to NlogN, where N is the number of antennas. The success of MITEoR with its 64 dual-polarization elements bodes well for the more ambitious HERA project, which would incorporate many identical or similar technologies using an order of magnitude more antennas, each with dramatically larger collecting area.Comment: To be published in proceedings of 2013 IEEE International Symposium on Phased Array Systems & Technolog

    Mapping our universe in 3D with MITEoR

    Get PDF
    Mapping our universe in 3D by imaging the redshifted 21 cm line from neutral hydrogen has the potential to overtake the cosmic microwave background as our most powerful cosmological probe, because it can map a much larger volume of our Universe, shedding new light on the epoch of reionization, inflation, dark matter, dark energy, and neutrino masses. We report on MITEoR, a pathfinder low-frequency radio interferometer whose goal is to test technologies that greatly reduce the cost of such 3D mapping for a given sensitivity. MITEoR accomplishes this by using massive baseline redundancy both to enable automated precision calibration and to cut the correlator cost scaling from N[superscript 2] to N log N, where N is the number of antennas. The success of MITEoR with its 64 dual-polarization elements bodes well for the more ambitious HERA project, which incorporates many identical or similar technologies using an order of magnitude more antennas, each with dramatically larger collecting area.National Science Foundation (U.S.) (Grant AST-0908848)National Science Foundation (U.S.) (Grant AST-1105835)MIT Kavli Instrumentation FundMassachusetts Institute of Technology. Undergraduate Research Opportunities Progra

    Development of a Cockpit Architecture for the Dream Chaser Orbital Vehicle

    No full text

    State atlases by state agencies: An historical survey

    No full text
    corecore