57,165 research outputs found

    1.5V fully programmable CMOS Membership Function Generator Circuit with proportional DC-voltage control

    Get PDF
    A Membership Function Generator Circuit (MFGC) with bias supply of 1.5 Volts and independent DC-voltage programmable functionalities is presented. The realization is based on a programmable differential current mirror and three compact voltage-to-current converters, allowing continuous and quasi-linear adjustment of the center position, height, width and slopes of the triangular/trapezoidal output waveforms. HSPICE simulation results of the proposed circuit using the parameters of a double-poly, three metal layers, 0.5 μm CMOS technology validate the functionality of the proposed architecture, which exhibits a maximum deviation of the linearity in the programmability of 7 %

    The vector BPS baby Skyrme model

    Full text link
    We investigate the relation between the BPS baby Skyrme model and its vector meson formulation, where the baby Skyrme term is replaced by a coupling between the topological current BμB_\mu and the vector meson field ωμ\omega_\mu. The vector model still possesses infinitely many symmetries leading to infinitely many conserved currents which stand behind its solvability. It turns out that the similarities and differences of the two models depend strongly on the specific form of the potential. We find, for instance, that compactons (which exist in the BPS baby Skyrme model) disappear from the spectrum of solutions of the vector counterpart. Specifically, for the vector model with the old baby Skyrme potential we find that it has compacton solutions only provided that a delta function source term effectively screening the topological charge is inserted at the compacton boundary. For the old baby Skyrme potential squared we find that the vector model supports exponentially localized solitons, like the BPS baby Skyrme model. These solitons, however, saturate a BPS bound which is a nonlinear function of the topological charge and, as a consequence, higher solitons are unstable w.r.t. decay into smaller ones, which is at variance with the more conventional situation (a linear BPS bound and stable solitons) in the BPS baby Skyrme model.Comment: 20 pages, 4 figure
    corecore