6 research outputs found

    Establishment of a real time RT-PCR assay to detect expression of selected genes from multiple-drug resistant Acinetobacter Baumannii / Sanaz Koosha

    Get PDF
    Acinetobacter baumannii has an important role in nosocomial infections. However, in addition to the respiratory infections caused by this bacterium it also causes other infections, such as, bacteremia, urinary tract infections, meningitis, eye and skin infections. Recently the antibiotic resistance of A. baumannii has increased in respect of almost all of the current antibiotics. The present study focuses on the expression of genes ABAYE0161 (hypothetical protein) and ABAYE3501 (general secretion pathway protein C) in the presence and absence of the antibiotic imipenem. These two genes were chosen from the previous studies concerning the effect of microgravity on the expression of A. baumannii genes. The multiple antibiotic resistant strain of A. baumannii was collected from a patient at University of Malaya Medical Centre (UMMC) in 1996. The identity of the tested strain was confirmed by sequencing and analysing of the 16S rDNA gene. The quality and quantity of the extracted RNA were checked out and the related cDNA was synthesized. Real time RT-PCR was done in the last step to evaluate the expression of the interested gene. In comparing our findings and the results from the microgravity study, we found that imipenem reduces the expression of the ABAYE0161 and ABAYE3501 genes, while microgravity has an inhibitory effect on ABAYE0161 and enhances ABAYE3501 gene expression

    Evaluation of Anti-Tumorigenic Effects of Diosmetin against Human Colon Cancer Xenografts in Athymic Nude Mice

    No full text
    Colon cancer is the third most common type of cancer in the world. Diosmetin (Dis), a natural O-methylated flavone, has been reported to have anti-cancer effects against different types of cancer. Although the mechanisms of action of Dis against several cancer cell lines are well reported, in vivo anti-tumorigenesis properties of this compound are still obscure. Therefore, this study aimed to investigate the anti-tumorigenesis properties of Dis against HCT-116 colon cancer xenografts in nude mice. HCT-116 colon cancer cells were injected in NCr nu/nu nude mice and treatment with Dis was initiated after the tumor volumes reached 100 mm3 and continued for four weeks. On the sacrificing date nude mice treated with 100 mg/kg of Dis showed significant lower tumor volume (264 ± 238.3 mm3) as compared to the untreated group (1428.8 ± 459.6 mm3). Anti-apoptotic Bcl-2 protein was significantly downregulated, while apoptotic protein (Bax) was significantly overexpressed in nude mice treated with 100 mg/kg Dis as compared to untreated mice. In conclusion, our in vivo results indicate that Dis significantly reduces tumor growth rate of HCT-116 colon cancer cells in nude mice at a dose of 100 mg/kg, and has no toxic effects in ICR mice up to 2000 mg/kg

    Cynometra cauliflora Linn. Attenuates metabolic abnormalities in high-fat diet-induced obese mice

    No full text
    Ethnopharmacological relevance: Cynometra cauliflora Linn. belongs to the Fabaceae family and is known locally in Malaysia as nam-nam. Traditionally, a decoction of the C. cauliflora leaves is used for treating hyperlipidemia and diabetes. Aim of the study: This study aims to investigate the anti-obesity and lipid lowering effects of ethanolic extract of C. cauliflora leaves and its major compound (vitexin) in C57BL/6 obese mice induced by high-fat diet (HFD), as well as to further identify the molecular mechanism underlying this action. Methods and material: Male C57BL/6 mice were fed with HFD (60% fat) for 16 weeks to become obese. The treatment started during the last 8 weeks of HFD feeding and the obese mice were treated with C. cauliflora leaf extract at 200 and 400 mg/kg/day, orlistat (10 mg/kg) and vitexin (10 mg/kg). Results: The oral administration of C. cauliflora (400 and 200 mg/kg) and vitexin significantly reduced body weight, adipose tissue and liver weight and lipid accumulation in the liver compared to control HFD group. Both doses of C. cauliflora also significantly (P ≤ 0.05) decreased serum triglyceride, LDL, lipase, IL-6, peptide YY, resistin levels, hyperglycemia, hyperinsulinemia, and hyperleptinemia compared to the control HFD group. Moreover, C. cauliflora significantly up-regulated the expression of adiponectin, Glut4, Mtor, IRS-1 and InsR genes, and significantly decreased the expression of Lepr in white adipose tissue. Furthermore, C. cauliflora significantly up-regulated the expression of hypothalamus Glut4, Mtor and NF-kB genes. GC-MS analysis of C. cauliflora leaves detected the presence of phytol, vitamin E and β-sitosterol. Besides, the phytochemical evaluation of C. cauliflora leaves showed the presence of flavonoid, saponin and phenolic compounds. Conclusion: This study shows interesting outcomes of C. cauliflora against HFD-induced obesity and associated metabolic abnormalities. Therefore, the C. cauliflora extract could be a potentially effective agent for obesity management and its related metabolic disorders such as insulin resistance and hyperlipidemia. © 2019 Elsevier B.V

    Medicinal Plants and Their Inhibitory Activities against Pancreatic Lipase: A Review

    No full text
    Obesity is recognized as a major life style disorder especially in developing countries and it is prevailing at an alarming speed in new world countries due to fast food intake, industrialization, and reduction of physical activity. Furthermore, it is associated with a vast number of chronic diseases and disabilities. To date, relatively effective drugs, from either natural or synthetic sources, are generally associated with serious side effects, often leading to cessation of clinical trials or even withdrawal from the market. In order to find new compounds which are more effective or with less adverse effects compared to orlistat, the drug that has been approved for obesity, new compounds isolated from natural products are being identified and screened for antiobesity effects, in particular, for their pancreatic lipase inhibitory effect. Pancreatic lipase inhibitory activity has been extensively used for the determination of potential efficacy of natural products as antiobesity agents. In attempts to identify natural products for overcoming obesity, more researches have been focused on the identification of newer pancreatic lipase inhibitors with less unpleasant adverse effects. In this review, we consider the potential role of plants that have been investigated for their pancreatic lipase inhibitory activity

    Zerumbone Induces Apoptosis in Breast Cancer Cells by Targeting αvβ3 Integrin upon Co-Administration with TP5-iRGD Peptide

    No full text
    Cell-penetrating peptides (CPPs) are highly promising tools to deliver therapeutic molecules into tumours. αVβ3 integrins are cell–matrix adhesion receptors, and are considered as an attractive target for anticancer therapies owing to their roles in the process of metastasis and angiogenesis. Therefore, this study aims to assess the effect of co-administration of zerumbone (ZER) and ZERencapsulated in hydroxypropyl-β-cyclodextrin with TP5-iRGD peptide towards cell cytotoxicity, apoptosis induction, and proliferation of normal and cancerous breast cells utilizing in vitro assays, as well as to study the molecular docking of ZER in complex with TP5-iRGD peptide. Cell viability assay findings indicated that ZER and ZERencapsulated in hydroxypropyl-β-cyclodextrin (ZER-HPβCD) inhibited the growth of estrogen receptor positivebreast cancer cells (ER+ MCF-7) at 72 h treatment with an inhibitory concentration (IC)50 of 7.51 ± 0.2 and 5.08 ± 0.2 µg/mL, respectively, and inhibited the growth of triple negative breast cancer cells (MDA-MB-231) with an IC50 of 14.96 ± 1.52 µg/mL and 12.18 ± 0.7 µg/mL, respectively. On the other hand, TP5-iRGD peptide showed no significant cytotoxicity on both cancer and normal cells. Interestingly, co-administration of TP5-iRGD peptide in MCF-7 cells reduced the IC50 of ZER from 7.51 ± 0.2 µg/mL to 3.13 ± 0.7 µg/mL and reduced the IC50 of ZER-HPβCD from 5.08 ± 0.2 µg/mL to 0.49 ± 0.004 µg/mL, indicating that the co-administration enhances the potency and increases the efficacy of ZER and ZER-HPβCD compounds. Acridine orange (AO)/propidium iodide (PI) staining under fluorescence microscopy showed evidence of early apoptosis after 72 h from the co-administration of ZER or ZER-HPβCD with TP5-iRGD peptide in MCF-7 breast cancer cells. The findings of the computational modelling experiment provide novel insights into the ZER interaction with integrin αvβ3 in the presence of TP5-iRGD, and this could explain why ZER has better antitumor activities when co-administered with TP5-iRGD peptide
    corecore