75 research outputs found

    Neural responses to syllable-induced P1m and social impairment in children with autism spectrum disorder and typically developing Peers

    Get PDF
    In previous magnetoencephalography (MEG) studies, children with autism spectrum disorder (ASD) have been shown to respond differently to speech stimuli than typically developing (TD) children. Quantitative evaluation of this difference in responsiveness may support early diagnosis and intervention for ASD. The objective of this research is to investigate the relationship between syllable-induced P1m and social impairment in children with ASD and TD children. We analyzed 49 children with ASD aged 40–92 months and age-matched 26 TD children. We evaluated their social impairment by means of the Social Responsiveness Scale (SRS) and their intelligence ability using the Kaufman Assessment Battery for Children (K-ABC). Multiple regression analysis with SRS score as the dependent variable and syllable-induced P1m latency or intensity and intelligence ability as explanatory variables revealed that SRS score was associated with syllable-induced P1m latency in the left hemisphere only in the TD group and not in the ASD group. A second finding was that increased leftward-lateralization of intensity was correlated with higher SRS scores only in the ASD group. These results provide valuable insights but also highlight the intricate nature of neural mechanisms and their relationship with autistic traits

    Relationships between peak alpha frequency, age, and autistic traits in young children with and without autism spectrum disorder

    Get PDF
    Background: Atypical peak alpha frequency (PAF) has been reported in children with autism spectrum disorder (ASD); however, the relationships between PAF, age, and autistic traits remain unclear. This study was conducted to investigate and compare the resting-state PAF of young children with ASD and their typically developing (TD) peers using magnetoencephalography (MEG). Methods: Nineteen children with ASD and 24 TD children, aged 5-7 years, underwent MEG under resting-state conditions. The PAFs in ten brain regions were calculated, and the associations between these findings, age, and autistic traits, measured using the Social Responsiveness Scale (SRS), were examined. Results: There were no significant differences in PAF between the children with ASD and the TD children. However, a unique positive association between age and PAF in the cingulate region was observed in the ASD group, suggesting the potential importance of the cingulate regions as a neurophysiological mechanism underlying distinct developmental trajectory of ASD. Furthermore, a higher PAF in the right temporal region was associated with higher SRS scores in TD children, highlighting the potential role of alpha oscillations in social information processing. Conclusions: This study emphasizes the importance of regional specificity and developmental factors when investigating neurophysiological markers of ASD. The distinct age-related PAF patterns in the cingulate regions of children with ASD and the association between right temporal PAF and autistic traits in TD children provide novel insights into the neurobiological underpinnings of ASD. These findings pave the way for future research on the functional implications of these neurophysiological patterns and their potential as biomarkers of ASD across the lifespan

    Isotope effect in transient electron thermal transport property and its impact on the electron internal transport barrier formation in LHD

    Get PDF
    In this study, we perform a comprehensive comparison of the transport hysteresis width in deuterium (D) plasmas, hydrogen (H) plasmas, and D-H mixed plasmas. The core focused modulation electron cyclotron resonance heating (MECH) is applied as the heat source perturbation, and the heat flux is evaluated using the energy conservation equation with the measured electron temperature response and the ECH deposition profile calculated by the ray-tracing scheme. Systematic density scan in plasmas with different ion mass reveals that there is no significant isotope effect in their hysteresis width. It is found that plasmas with heavier isotope mass can easily form the electron internal transport barrier. As the hysteresis width is insensitive to the isotope mass, the classical part of the diffusivity is considered to be responsible for the isotope effect in the transport barrier formation

    A custom magnetoencephalography device reveals brain connectivity and high reading/decoding ability in children with autism

    Get PDF
    A subset of individuals with autism spectrum disorder (ASD) performs more proficiently on certain visual tasks than may be predicted by their general cognitive performances. However, in younger children with ASD (aged 5 to 7), preserved ability in these tasks and the neurophysiological correlates of their ability are not well documented. In the present study, we used a custom child-sized magnetoencephalography system and demonstrated that preserved ability in the visual reasoning task was associated with rightward lateralisation of the neurophysiological connectivity between the parietal and temporal regions in children with ASD. In addition, we demonstrated that higher reading/decoding ability was also associated with the same lateralisation in children with ASD. These neurophysiological correlates of visual tasks are considerably different from those that are observed in typically developing children. These findings indicate that children with ASD have inherently different neural pathways that contribute to their relatively preserved ability in visual tasks

    Joint attention and intelligence in children with autism spectrum disorder without severe intellectual disability

    No full text
    In children with autism spectrum disorder (ASD), joint attention is regarded as a predictor of language function, social skills, communication, adaptive function, and intelligence. However, existing information about the association between joint attention and intelligence is limited. Most such studies have examined children with low intelligence. For this study, we investigated whether joint attention is related to intelligence in young children with autism spectrum disorder (ASD) without severe intellectual disability. We analyzed 113 children with ASD aged 40–98 months. Their Kaufman Assessment Battery (K‐ABC) Mental Processing Index (MPI) scores are 60 and more (mean 93.4). We evaluated their intelligence using K‐ABC and evaluated their joint attention using ADOS‐2. After we performed simple regression analyses using K‐ABC MPI and its nine subscales as dependent variables, using joint attention as the independent variable, we identified joint attention as a positive predictor of the MPI and its two subscales. From this result, we conclude that joint attention is related to intelligence in young children with ASD without severe intellectual disability. This result suggests a beneficial effect of early intervention targeting joint attention for children with ASD. LAY SUMMARY: Joint attention is the ability to coordinate visual attention with another person and then shift one's gaze toward an object or event. Impairment of joint attention is regarded as an early marker of autism spectrum disorder (ASD). This study revealed impairment of joint attention as associated with lower intelligence in ASD children. These results are expected to constitute a rationale for future studies, particularly addressing beneficial effects of early intervention targeting joint attention for children with ASD
    • 

    corecore