887 research outputs found

    Interplay between intrinsic plasma rotation and magnetic island evolution in disruptive discharges

    Get PDF
    The behavior of the intrinsic toroidal rotation of the plasma column during the growth and eventualsaturation of m/n = 2/1 magnetic islands, triggered by programmed density rise, has been carefully investigatedin disruptive discharges in TCABR. The results show that, as the island starts to grow and rotate at aspeed larger than that of the plasma column, the angular frequency of the intrinsic toroidal rotation increasesand that of the island decreases, following the expectation of synchronization. As the island saturates at alarge size, just before a major disruption, the angular speed of the intrinsic rotation decreases quite rapidly,even though the island keeps still rotating at a reduced speed. This decrease of the toroidal rotation is quitereproducible and can be considered as an indicative of disruption

    Kondo Effect in an Electron System with Dynamical Jahn-Teller Impurity

    Full text link
    We investigate how Kondo phenomenon occurs in the Anderson model dynamically coupled with local Jahn-Teller phonons. It is found that the total angular moment composed of electron pseudo-spin and phonon angular moments is screened by conduction electrons. Namely, phonon degrees of freedom essentially contribute to the formation of singlet ground state. A characteristic temperature of the Kondo effect due to dynamical Jahn-Teller phonons is explained by an effective ss-dd Hamiltonian with anisotropic exchange interaction obtained from the Jahn-Teller-Anderson model in a non-adiabatic region.Comment: 5 pages, 3 figure

    Electric Dipolar Susceptibility of the Anderson-Holstein Model

    Full text link
    The temperature dependence of electric dipolar susceptibility \chi_P is discussed on the basis of the Anderson-Holstein model with the use of a numerical renormalization group (NRG) technique. Note that P is related with phonon Green's function D. In order to obtain correct temperature dependence of P at low temperatures, we propose a method to evaluate P through the Dyson equation from charge susceptibility \chi_c calculated by the NRG, in contrast to the direct NRG calculation of D. We find that the irreducible charge susceptibility estimated from \chi_c agree with the perturbation calculation, suggesting that our method works well.Comment: 4 pages, 4 figure

    Effect of Anharmonicity on the Kondo Phenomena of a Magnetic Ion Vibrating in a Confinement Potential

    Full text link
    Effect of anharmonicity of a cage potential for a magnetic ion vibrating in a metal is investigated by the numerical renormalization group method. The cage potential is assumed to be one-dimensional and of the double-well type. In the absence of the Coulomb interaction, we find continuous crossover among the three limiting cases: Yu-Anderson-type Kondo regime, the double-well-type Kondo one, and the renormalized Fermi chain one. In the entire parameter space of the double-well potential, the ground state is described by a local Fermi liquid. In the Yu-Anderson-type Kondo regime, a quantum phase transition to the ground state with odd parity takes place passing through the two-channel Kondo fixed point when the Coulomb interaction increases. Therefore, the vibration of a magnetic ion in an oversized cage structure is a promising route to the two-channel Kondo effect.Comment: 6 pages, 3 figures, accepted for JPS

    Effects of mindfulness-based interventions on biomarkers and low-grade inflammation in patients with psychiatric disorders: A meta-analytic review

    Get PDF
    Mindfulness-Based Interventions (MBIs) present positive effects on mental health in diverse populations. However, the detailed associations between MBIs and biomarkers in patients with psychiatric disorders remain poorly understood. The aim of this study was to examine the effects of MBIs on biomarkers in psychiatric illness used to summarise the effects of low-grade inflammation. A systematic review of PubMed, EMBASE, PsycINFO, and the Cochrane Library was conducted. Effect sizes (ESs) were determined by Hedges’ g and the number needed to treat (NNT). Heterogeneity was evaluated. A total of 10 trials with 998 participants were included. MBIs showed significant improvements in the event-related potential amplitudes in attention-deficit hyperactivity disorder, the methylation of serotonin transporter genes in post-traumatic stress disorder, the salivary levels of interleukin 6 (IL-6) and tumour necrosis factor alpha (TNF-a) in depression, and the blood levels of adrenocorticotropic hormone (ACTH), IL-6, and TNF-a in generalised anxiety disorder. MBIs showed low but significant effects on health status related to biomarkers of low-grade inflammation (g = -0.21; 95% confidence interval (CI) –0.41 to -0.01; NNT = 8.47), with no heterogeneity (I2 = 0; 95% CI 0 to 79). More trials are needed to establish the impact of MBIs on biomarkers in psychiatric illness

    Cooperative Effect of Coulomb Interaction and Electron-Phonon Coupling on the Heavy Fermion State in the Two-Orbital Periodic Anderson Model

    Full text link
    We investigate the two-orbital periodic Anderson model, where the local orbital fluctuations of f-electrons couple with a two-fold degenerate Jahn-Teller phonon, by using the dynamical mean-field theory. It is found that the heavy fermion state caused by the Coulomb interaction between f-electrons U is largely enhanced due to the electron-phonon coupling g, in contrast to the case with the single-orbital periodic Anderson model where the effects of U and g compete to each other. In the heavy fermion state for large UU and g, both the orbital and lattice fluctuations are enhanced, while the charge (valence) and spin fluctuations are suppressed. In the strong coupling regime, a sharp soft phonon mode with a large spectral weight is observed for small U, while a broad soft phonon mode with a small spectral weight is observed for large U. The cooperative effect of U and g for half-filling with two f-electrons per atom nf=2n_f=2 is more pronounced than that for quarter-filling with nf=1n_f=1.Comment: 8 pages, 11 figures, accepted for publication in JPS

    Enhanced Kondo Effect in an Electron System Dynamically Coupled with Local Optical Phonon

    Full text link
    We discuss Kondo behavior of a conduction electron system coupled with local optical phonon by analyzing the Anderson-Holstein model with the use of a numerical renormalization group (NRG) method. There appear three typical regions due to the balance between Coulomb interaction UeeU_{\rm ee} and phonon-mediated attraction UphU_{\rm ph}. For Uee>UphU_{\rm ee}>U_{\rm ph}, we observe the standard Kondo effect concerning spin degree of freedom. Since the Coulomb interaction is effectively reduced as UeeUphU_{\rm ee}-U_{\rm ph}, the Kondo temperature TKT_{\rm K} is increased when UphU_{\rm ph} is increased. On the other hand, for Uee<UphU_{\rm ee}<U_{\rm ph}, there occurs the Kondo effect concerning charge degree of freedom, since vacant and double occupied states play roles of pseudo-spins. Note that in this case, TKT_{\rm K} is decreased with the increase of UphU_{\rm ph}. Namely, TKT_{\rm K} should be maximized for UeeUphU_{\rm ee} \approx U_{\rm ph}. Then, we analyze in detail the Kondo behavior at Uee=UphU_{\rm ee}=U_{\rm ph}, which is found to be explained by the polaron Anderson model with reduced hybridization of polaron and residual repulsive interaction among polarons. By comparing the NRG results of the polaron Anderson model with those of the original Anderson-Holstein model, we clarify the Kondo behavior in the competing region of UeeUphU_{\rm ee} \approx U_{\rm ph}.Comment: 8 pages, 8 figure

    Kondo Effect of a Magnetic Ion Vibrating in a Harmonic Potential

    Full text link
    To discuss Kondo effects of a magnetic ion vibrating in the sea of conduction electrons, a generalized Anderson model is derived. The model includes a new channel of hybridization associated with phonon emission or absorption. In the simplest case of the localized electron orbital with the s-wave symmetry, hybridization with p-waves becomes possible. Interesting interplay among the conventional s-wave Kondo effect and the p-wave one and the Yu-Anderson type Kondo effect is found and the ground state phase diagram is determined by using the numerical renormalization group method. Two different types of stable fixed points are identified and the two-channel Kondo fixed points are generically realized on the boundary.Comment: 15 pages, 17 figures, J. Phys. Soc. Jpn. 80 (2011) No.6 to be publishe
    corecore