405 research outputs found

    Exome-based Variant Detection in Core Promoters.

    Get PDF
    Core promoter controls the initiation of transcription. Core promoter sequence change can disrupt transcriptional regulation, lead to impairment of gene expression and ultimately diseases. Therefore, comprehensive characterization of core promoters is essential to understand normal and abnormal gene expression in biomedical studies. Here we report the development of EVDC (Exome-based Variant Detection in Core promoters) method for genome-scale analysis of core-promoter sequence variation. This method is based on the fact that exome sequences contain the sequences not only from coding exons but also from non-coding region including core promoters generated by random fragmentation in exome sequencing process. Using exome data from three cell types of CD4+ T cells, CD19+ B cells and neutrophils of a single individual, we characterized the features of core promoter-mapped exome sequences, and analysed core-promoter variation in this individual genome. We also compared the core promoters between YRI (Yoruba in Ibadan, Nigeria) and the CEU (Utah residents of European decedent) populations using the exome data generated by the 1000 Genome project, and observed much higher variation in YRI population than in CEU population. Our study demonstrates that the EVDC method provides a simple but powerful means for genome-wile de novo characterization of core promoter sequence variation

    SAGE is far more sensitive than EST for detecting low-abundance transcripts

    Get PDF
    BACKGROUND: Isolation of low-abundance transcripts expressed in a genome remains a serious challenge in transcriptome studies. The sensitivity of the methods used for analysis has a direct impact on the efficiency of the detection. We compared the EST method and the SAGE method to determine which one is more sensitive and to what extent the sensitivity is great for the detection of low-abundance transcripts. RESULTS: Using the same low-abundance transcripts detected by both methods as the targeted sequences, we observed that the SAGE method is 26 times more sensitive than the EST method for the detection of low-abundance transcripts. CONCLUSIONS: The SAGE method is more efficient than the EST method in detecting the low-abundance transcripts

    BRCA1 and BRCA2 Variation in Taiwanese General Population and the Cancer Cohort

    Get PDF
    BRCA1 and BRCA2 (BRCA) play essential roles in maintaining genome stability. Rapidly evolving human BRCA generates oncogenic variants causing high cancer risk. BRCA variation is ethnic-specific in reflecting adaptation and/or effects of genetic drift. Taiwanese population of 23.8 million is an admixture of multiple ethnic origins; Taiwan’s subtropical and tropical climate and geographically islandic location provide a unique natural environment. Therefore, Taiwanese population provides a unique model to study human BRCA variation. Through collecting, standardizing, annotating, and classifying publicly available BRCA variants derived from Taiwanese general population and the cancer cohort, we identified 335 BRCA variants, of which 164 were from 1,517 non-cancer individuals, 126 from 2,665 cancer individuals, and 45 from both types of individuals. We compared the variant data with those from other ethnic populations such as mainland Chinese, Macau Chinese, Japanese, Korean, Indian, and non-Asians. We observed that the sharing rates with other Asian ethnic populations were correlated with its genetic relationship. Over 60% of the 335 Taiwanese BRCA variants were VUS, unclassified variants, or novel variants, reflecting the ethnic-specific features of Taiwanese BRCA variation. While it remains challenging to classify these variants, our structural and in silico analyses predicted their enrichment of BRCA deleterious variants. We further determined the 3.8% prevalence of BRCA pathogenic variants in the Taiwanese breast cancer cohort, and determined 0.53% prevalence of the BRCA pathogenic variants in Taiwanese general population, with the estimated 126,140 BRCA pathogenic variant carriers. We identified BRCA2 c.5164_5165delAG at BRCA2 BRC6 motif as a potential founder mutation in Taiwanese population. Our study on BRCA variation in Taiwanese and other East Asian populations demonstrates that ethnic specificity is a common phenomenon for BRCA variation in East Asian population; the data generated from the study provide a reference for clinical applications in BRCA-related cancer in Taiwanese population

    The genome of polymorphonuclear neutrophils maintains normal coding sequences

    Get PDF
    Genetic studies often use genomic DNA from whole blood cells, of which the majority are the polymorphonuclear myeloid cells. Those cells undergo dramatic change of nuclear morphology following cellular differentiation. It remains elusive if the nuclear morphological change accompanies sequence alternations from the intact genome. If such event exists, it will cause a serious problem in using such type of genomic DNA for genetic study as the sequences will not represent the intact genome in the host individuals. Using exome sequencing, we compared the coding regions between neutrophil, which is the major type of polymorphonuclear cells, and CD4+ T cell, which has an intact genome, from the same individual. The results show that exon sequences between the two cell types are essentially the same. The minor differences represented by the missed exons and base changes between the two cell types were validated to be mainly caused by experimental errors. Our study concludes that genomic DNA from whole blood cells can be safely used for genetic studies

    Prevalence and spectrum of BRCA germline variants in mainland Chinese familial breast and ovarian cancer patients.

    Get PDF
    Germline mutations in BRCA1 and BRCA2 are the most penetrating genetic predispositions for breast and ovarian cancer, and their presence is largely ethnic-specific. Comprehensive information about the prevalence and spectrum of BRCA mutations has been collected in European and North American populations. However, similar information is lacking in other populations, including the mainland Chinese population despite its large size of 1.4 billion accounting for one fifth of the world\u27s population. Herein, we performed an extensive literature analysis to collect BRCA variants identified from mainland Chinese familial breast and ovarian cancer patients. We observed 137 distinct BRCA1 variants in 409 of 3,844 and 80 distinct BRCA2 variants in 157 of 3,024 mainland Chinese patients, with an estimated prevalence of 10.6% for BRCA1 and 5.2% for BRCA2. Of these variants, only 40.3% in BRCA1 and 42.5% in BRCA2 are listed in current Breast Cancer Information Core database. We observed higher frequent variation in BRCA1 exons 11A, 11C, 11D, and 24 and BRCA2 exon 10 in Chinese patients than in the patients of other populations. The most common pathogenic variant in BRCA1 wasc.981_982delAT in exon 11A, and in BRCA2 c.3195_3198delTAAT in exon 11B and c.5576_5579delTTAA in exon 11E; the most common novel variant in BRCA1 was c.919A\u3eG in exon 10A, and in BRCA2 c.7142delC in exon 14. None of the variants overlap with the founder mutations in other populations. Our analysis indicates that the prevalence of BRCA variation in mainland Chinese familial breast and ovarian cancer patients is at a level similar to but the spectrum is substantially different from the ones of other populations

    Preclinical Models for Investigation of Herbal Medicines in Liver Diseases: Update and Perspective

    Get PDF
    Liver disease results from a dynamic pathological process associated with cellular and genetic alterations, which may progress stepwise to liver dysfunction. Commonly, liver disease begins with hepatocyte injury, followed by persistent episodes of cellular regeneration, inflammation, and hepatocyte death that may ultimately lead to nonreversible liver failure. For centuries, herbal remedies have been used for a variety of liver diseases and recent studies have identified the active compounds that may interact with liver disease-associated targets. Further study on the herbal remedies may lead to the formulation of next generation medicines with hepatoprotective, antifibrotic, and anticancer properties. Still, the pharmacological actions of vast majority of herbal remedies remain unknown; thus, extensive preclinical studies are important. In this review, we summarize progress made over the last five years of the most commonly used preclinical models of liver diseases that are used to screen for curative herbal medicines for nonalcoholic fatty liver disease, liver fibrosis/cirrhosis, and liver. We also summarize the proposed mechanisms associated with the observed liver-protective, antifibrotic, and anticancer actions of several promising herbal medicines and discuss the challenges faced in this research field

    Poly A- Transcripts Expressed in HeLa Cells

    Get PDF
    BACKGROUND: Transcripts expressed in eukaryotes are classified as poly A+ transcripts or poly A- transcripts based on the presence or absence of the 3' poly A tail. Most transcripts identified so far are poly A+ transcripts, whereas the poly A- transcripts remain largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: We developed the TRD (Total RNA Detection) system for transcript identification. The system detects the transcripts through the following steps: 1) depleting the abundant ribosomal and small-size transcripts; 2) synthesizing cDNA without regard to the status of the 3' poly A tail; 3) applying the 454 sequencing technology for massive 3' EST collection from the cDNA; and 4) determining the genome origins of the detected transcripts by mapping the sequences to the human genome reference sequences. Using this system, we characterized the cytoplasmic transcripts from HeLa cells. Of the 13,467 distinct 3' ESTs analyzed, 24% are poly A-, 36% are poly A+, and 40% are bimorphic with poly A+ features but without the 3' poly A tail. Most of the poly A- 3' ESTs do not match known transcript sequences; they have a similar distribution pattern in the genome as the poly A+ and bimorphic 3' ESTs, and their mapped intergenic regions are evolutionarily conserved. Experiments confirmed the authenticity of the detected poly A- transcripts. CONCLUSION/SIGNIFICANCE: Our study provides the first large-scale sequence evidence for the presence of poly A- transcripts in eukaryotes. The abundance of the poly A- transcripts highlights the need for comprehensive identification of these transcripts for decoding the transcriptome, annotating the genome and studying biological relevance of the poly A- transcripts

    Family-specific, novel, deleterious germline variants provide a rich resource to identify genetic predispositions for BRCAx familial breast cancer

    Get PDF
    BACKGROUND: Genetic predisposition is the primary risk factor for familial breast cancer. For the majority of familial breast cancer, however, the genetic predispositions remain unknown. All newly identified predispositions occur rarely in disease population, and the unknown genetic predispositions are estimated to reach up to total thousands. Family unit is the basic structure of genetics. Because it is an autosomal dominant disease, individuals with a history of familial breast cancer must carry the same genetic predisposition across generations. Therefore, focusing on the cases in lineages of familial breast cancer, rather than pooled cases in disease population, is expected to provide high probability to identify the genetic predisposition for each family. METHODS: In this study, we tested genetic predispositions by analyzing the family-specific variants in familial breast cancer. Using exome sequencing, we analyzed three families and 22 probands with BRCAx (BRCA-negative) familial breast cancer. RESULTS: We observed the presence of family-specific, novel, deleterious germline variants in each family. Of the germline variants identified, many were shared between the disease-affected family members of the same family but not found in different families, which have their own specific variants. Certain variants are putative deleterious genetic predispositions damaging functionally important genes involved in DNA replication and damaging repair, tumor suppression, signal transduction, and phosphorylation. CONCLUSIONS: Our study demonstrates that the predispositions for many BRCAx familial breast cancer families can lie in each disease family. The application of a family-focused approach has the potential to detect many new predispositions

    2.45GHz radiofrequency fields alter gene expression in cultured human cells

    Get PDF
    AbstractThe biological effect of radiofrequency (RF) fields remains controversial. We address this issue by examining whether RF fields can cause changes in gene expression. We used the pulsed RF fields at a frequency of 2.45GHz that is commonly used in telecommunication to expose cultured human HL-60 cells. We used the serial analysis of gene expression (SAGE) method to measure the RF effect on gene expression at the genome level. We observed that 221 genes altered their expression after a 2-h exposure. The number of affected genes increased to 759 after a 6-h exposure. Functional classification of the affected genes reveals that apoptosis-related genes were among the upregulated ones and the cell cycle genes among the downregulated ones. We observed no significant increase in the expression of heat shock genes. These results indicate that the RF fields at 2.45GHz can alter gene expression in cultured human cells through non-thermal mechanism
    • …
    corecore