33 research outputs found

    Effects of domestic cooking process on the chemical and biological properties of dietary phytochemicals

    Get PDF
    peer-reviewedFoods are good sources of vitamins, minerals and dietary fibers as well as phytochemicals, which are beneficial for the human body as nutritional supplements. The nutritional value (crude fibers, crude proteins, crude fats, flavonols, carotenoids, polyphenols, glucosinolate, chlorophyll, and ascorbic acid) and biological or functional properties (antioxidant activity, anticancer activity, or anti-mutagenic activity) of foods can be well retained and protected with the appropriate cooking methods. The chemical, physical and enzyme modifications that occur during cooking will alter the dietary phytochemical antioxidant capacity and digestibility. This paper reviewed the recent advances on the effects of domestic cooking process on the chemical and biological properties of dietary phytochemicals. Furthermore, the possible mechanisms underlying these changes were discussed, and additional implications and future research goals were suggested. The domestic cooking process for improving the palatability of foods and increasing the bioavailability of nutrients and bioactive phytochemicals has been well supported

    3,3′,4,5′-Tetramethoxy-trans-stilbene improves insulin resistance by activating the IRS/PI3K/Akt pathway and inhibiting oxidative stress

    Get PDF
    The potential anti-diabetic effect of resveratrol derivative, 3,3′,4,5′-tetramethoxy-trans-stilbene (3,3′,4,5′-TMS) and its underlying mechanism in high glucose (HG) and dexamethasone (DXMS)-stimulated insulin-resistant HepG2 cells (IR-HepG2) were investigated. 3,3′,4,5′-TMS did not reduce the cell viability of IR-HepG2 cells at the concentrations of 0.5–10 µM. 3,3′,4,5′-TMS increased the potential of glucose consumption and glycogen synthesis in a concentration-dependent manner in IR-HepG2 cells. 3,3′,4,5′-TMS ameliorated insulin resistance by enhancing the phosphorylation of glycogen synthase kinase 3 beta (GSK3β), inhibiting phosphorylation of insulin receptor substrate-1 (IRS-1), and activating phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway in IR-HepG2 cells. Furthermore, 3,3′,4,5′-TMS significantly suppressed levels of reactive oxygen species (ROS) with up-regulation of nuclear factor erythroid 2-related factor 2 (Nrf2) expression. To conclude, the beneficial effect of 3,3′,4,5′-TMS against insulin resistance to increase glucose consumption and glycogen synthesis was mediated through activation of IRS/PI3K/Akt signaling pathways in the IR-HepG2 cells, accomplished with anti-oxidative activity through up-regulation of Nrf2.University of Macau | Ref. SRG2019-00154-ICMSUniversity of Macau | Ref. MYRG2019-00157-ICMSUniversity of Macau | Ref. MYRG2018-00169-ICMSScience and Technology Development Fund | Ref. 0117/2020/AScience and Technology Development Fund | Ref. SKL-QRCM(UM)-2020–2022Science and Technology Development Fund | Ref. 0098/2020/AMinisterio de Ciencia e Innovación | Ref. RYC2020-030365-

    Effects of arachidonic acid metabolites on cardiovascular health and disease

    Get PDF
    Arachidonic acid (AA) is an essential fatty acid that is released by phospholipids in cell membranes and metabolized by cyclooxygenase (COX), cytochrome P450 (CYP) enzymes, and lipid oxygenase (LOX) pathways to regulate complex cardiovascular function under physiological and pathological conditions. Various AA metabolites include prostaglandins, prostacyclin, thromboxanes, hydroxyeicosatetraenoic acids, leukotrienes, lipoxins, and epoxyeicosatrienoic acids. The AA metabolites play important and differential roles in the modulation of vascular tone, and cardiovascular complications including atherosclerosis, hypertension, and myocardial infarction upon actions to different receptors and vascular beds. This article reviews the roles of AA metabolism in cardiovascular health and disease as well as their potential therapeutic implication.Research Committee of the University of Macau | Ref. SRG2019-00154-ICMSResearch Committee of the University of Macau | Ref. MYRG2019-00157-ICMSOperation Fund of State Key Laboratory of Quality Research in Chinese Medicine of University of Macau | Ref. SKL-QRCM(UM)-2020-202

    Roles of Reactive Oxygen Species in Vascular Complications of Diabetes: Therapeutic Properties of Medicinal Plants and Food

    No full text
    The rising prevalence of chronic metabolic disorders, such as obesity and type 2 diabetes, most notably associated with cardiovascular diseases, has emerged as a major global health concern. Reactive oxygen species (ROS) play physiological functions by maintaining normal cellular redox signaling. By contrast, a disturbed balance occurring between ROS production and detoxification of reactive intermediates results in excessive oxidative stress. Oxidative stress is a critical mediator of endothelial dysfunction in obesity and diabetes. Under a hyperglycemic condition, the antioxidant enzymes are downregulated, resulting in an increased generation of ROS. Increases in ROS lead to impairment of endothelium-dependent vasodilatations by reducing NO bioavailability. Chronic treatments with antioxidants were reported to prevent the development of endothelial dysfunction in diabetic patients and animals; however, the beneficial effects of antioxidant treatment in combating vascular complications in diabetes remain controversial as antioxidants do not always reverse endothelial dysfunction in clinical settings. In this review, we summarize the latest progress in research focused on the role of ROS in vascular complications of diabetes and the antioxidant properties of bioactive compounds from medicinal plants and food in animal experiments and clinical studies to provide insights for the development of therapeutic strategies

    Piceatannol Protects Brain Endothelial Cell Line (bEnd.3) against Lipopolysaccharide-Induced Inflammation and Oxidative Stress

    No full text
    Dysfunction of the blood–brain barrier (BBB) is involved in the pathogenesis of many cerebral diseases. Oxidative stress and inflammation are contributing factors for BBB injury. Piceatannol, a natural ingredient found in various plants, such as grapes, white tea, and passion fruit, plays an important role in antioxidant and anti-inflammatory responses. In this study, we examined the protective effects of piceatannol on lipopolysaccharide (LPS) insult in mouse brain endothelial cell line (bEnd.3) cells and the underlying mechanisms. The results showed that piceatannol mitigated the upregulated expression of adhesion molecules (ICAM-1 and VCAM-1) and iNOS in LPS-treated bEnd.3 cells. Moreover, piceatannol prevented the generation of reactive oxygen species in bEnd.3 cells stimulated with LPS. Mechanism investigations suggested that piceatannol inhibited NF-κB and MAPK activation. Taken together, these observations suggest that piceatannol reduces inflammation and oxidative stress through inactivating the NF-κB and MAPK signaling pathways on cerebral endothelial cells in vitro

    3,4′,5-Trimethoxy-trans-stilbene Alleviates Endothelial Dysfunction in Diabetic and Obese Mice via Activation of the AMPK/SIRT1/eNOS Pathway

    No full text
    3,4′,5-trimethoxy-trans-stilbene (TMS) is a methoxylated derivative of resveratrol. Previous studies showed the vaso-protective effects of resveratrol; nevertheless, research on this derivative is scarce. The current study aimed to explore whether TMS can alleviate endothelial dysfunction in diabetic and obese mice, along with the underlying mechanisms. Thoracic aortas isolated from male C57BL/6J mice and primary cultures of rat aortic endothelial cells were treated with high glucose with or without TMS. High glucose exposure impaired acetylcholine-induced endothelium-dependent relaxations, down-regulated NO bioavailability and the AMP-activated protein kinase (AMPK)/Sirtuin 1 (SIRT1)/endothelial nitric oxide synthase (eNOS) pathway, increased endoplasmic reticulum (ER) stress and oxidative stress, which were reversed by TMS treatment. Moreover, the protective effects of TMS were abolished by Compound C (AMPK inhibitor), and EX527 (SIRT1 inhibitor). The mice were fed with high-fat diet (60% kcal% fat) for 14 weeks to establish a diabetic and obese model, and were orally administered TMS (10 mg/kg/day) in the last 4 weeks. Chronic TMS treatment alleviated endothelial dysfunction via enhancing the AMPK/SIRT1/eNOS pathway and attenuated oxidative stress and ER stress in aortas of diet-induced obese mice. In summary, our study reveals the potent vaso-protective effect of TMS and its therapeutic potential against endothelial dysfunction in metabolic disorders

    Neuroprotective Effects of Quercetin in Alzheimer's Disease.

    No full text
    Quercetin is a flavonoid with notable pharmacological effects and promising therapeutic potential. It is widely distributed among plants and found commonly in daily diets predominantly in fruits and vegetables. Neuroprotection by quercetin has been reported in several in vitro studies. It has been shown to protect neurons from oxidative damage while reducing lipid peroxidation. In addition to its antioxidant properties, it inhibits the fibril formation of amyloid-β proteins, counteracting cell lyses and inflammatory cascade pathways. In this review, we provide a synopsis of the recent literature exploring the relationship between quercetin and cognitive performance in Alzheimer's disease and its potential as a lead compound in clinical applications

    Citri Reticulatae Pericarpium (Chenpi) Protects against Endothelial Dysfunction and Vascular Inflammation in Diabetic Rats

    No full text
    Dried tangerine peel (Citri reticulatae Pericarpium, CRP; Chenpi in Chinese) possesses medicine and food homology with hypolipidemic, anti-inflammatory and antioxidant activities. This study aimed to explore the protective effect of CRP extract on endothelial function and inflammation in type 2 diabetic rats and the related mechanisms. Type 2 diabetes mellitus was induced by high-fat diet (HFD)/streptozotocin (STZ) in male Sprague Dawley rats, and CRP extract was orally administered at 400 mg/kg/day for 4 weeks. Rat and mouse aortas were treated with high glucose and CRP extract ex vivo. The data showed that the ethanolic extract of CRP normalized blood pressure and the plasma lipid profile as well as the plasma levels of liver enzymes in diabetic rats. Impaired endothelium-dependent relaxations in aortas, carotid arteries and renal arteries were improved. CRP extract suppressed vascular inflammatory markers and induced AMPK activation in aortas of diabetic rats. Exposure to high glucose impaired vasodilation in aortas of rats and mice, and this impairment was prevented by co-incubation with CRP extract. In conclusion, our findings suggest that CRP extract protects endothelial function by inhibiting the vascular inflammatory state on activation of AMPK in diabetic rats
    corecore