388 research outputs found

    Classification of Human Emotions from EEG Signals using Statistical Features and Neural Network

    Get PDF
    A statistical based system for human emotions classification by using electroencephalogram (EEG) is proposed in this paper. The data used in this study is acquired using EEG and the emotions are elicited from six human subjects under the effect of emotion stimuli. This paper also proposed an emotion stimulation experiment using visual stimuli. From the EEG data, a total of six statistical features are computed and back-propagation neural network is applied for the classification of human emotions. In the experiment of classifying five types of emotions: Anger, Sad, Surprise, Happy, and Neutral. As result the overall classification rate as high as 95% is achieved

    Degenerate r-truncated Stirling numbers

    Get PDF
    For any positive integer r r , the r r -truncated (or r r -associated) Stirling number of the second kind S2(r)(n,k) S_{2}^{(r)}(n, k) enumerates the number of partitions of the set {1,2,3,…,n} \{1, 2, 3, \dots, n\} into k k non-empty disjoint subsets, such that each subset contains at least r r elements. We introduce the degenerate r r -truncated Stirling numbers of the second kind and of the first kind. They are degenerate versions of the r r -truncated Stirling numbers of the second kind and of the first kind, and reduce to the degenerate Stirling numbers of the second kind and of the first kind for r=1 r = 1 . Our aim is to derive recurrence relations for both of those numbers

    Nematic topological superconducting phase in Nb-doped Bi2Se3

    Get PDF
    A nematic topological superconductor has an order parameter symmetry, which spontaneously breaks the crystalline symmetry in its superconducting state. This state can be observed, for example, by thermodynamic or upper critical field experiments in which a magnetic field is rotated with respect to the crystalline axes. The corresponding physical quantity then directly reflects the symmetry of the order parameter. We present a study on the superconducting upper critical field of the Nb-doped topological insulator NbxBi2Se3 for various magnetic field orientations parallel and perpendicular to the basal plane of the Bi2Se3 layers. The data were obtained by two complementary experimental techniques, magnetoresistance and DC magnetization, on three different single crystalline samples of the same batch. Both methods and all samples show with perfect agreement that the in-plane upper critical fields clearly demonstrate a two-fold symmetry that breaks the three-fold crystal symmetry. The two-fold symmetry is also found in the absolute value of the magnetization of the initial zero-field-cooled branch of the hysteresis loop and in the value of the thermodynamic contribution above the irreversibility field, but also in the irreversible properties such as the value of the characteristic irreversibility field and in the width of the hysteresis loop. This provides strong experimental evidence that Nb-doped Bi2Se3 is a nematic topological superconductor similar to the Cu- and Sr-doped Bi2Se3

    Nematic Topological Superconducting Phase in Nb-Doped Bi₂Se₃

    Get PDF
    A nematic topological superconductor has an order parameter symmetry, which spontaneously breaks the crystalline symmetry in its superconducting state. This state can be observed, for example, by thermodynamic or upper critical field experiments in which a magnetic field is rotated with respect to the crystalline axes. The corresponding physical quantity then directly reflects the symmetry of the order parameter. We present a study on the superconducting upper critical field of the Nb-doped topological insulator NbxBi2Se3 for various magnetic field orientations parallel and perpendicular to the basal plane of the Bi2Se3 layers. The data were obtained by two complementary experimental techniques, magnetoresistance and DC magnetization, on three different single crystalline samples of the same batch. Both methods and all samples show with perfect agreement that the in-plane upper critical fields clearly demonstrate a two-fold symmetry that breaks the three-fold crystal symmetry. The two-fold symmetry is also found in the absolute value of the magnetization of the initial zero-field-cooled branch of the hysteresis loop and in the value of the thermodynamic contribution above the irreversibility field, but also in the irreversible properties such as the value of the characteristic irreversibility field and in the width of the hysteresis loop. This provides strong experimental evidence that Nb-doped Bi2Se3 is a nematic topological superconductor similar to the Cu- and Sr-doped Bi2Se3

    Effects of Glycyrrhizae Radix Pharmacopuncture Intravenous Injection on Ischemia-induced Acute Renal Failure in Rabbits

    Get PDF
    Objectives: The present study was undergone to determine whether Glycyrrhizae Radix pharmacopuncture intravenous injection exerts beneficial effect against the ischemia-induced acute renal failure in rabbits. Methods: Rabbits were treated with Glycyrrhizae Radix pharmacopuncture via i.v., followed by renal ischemia/reperfusion. The fractional excretion of glucose and phosphate were measured and the malondialdehyde content was also determined. The morphological changes of cortical part of kidney also observed with light microscope. Results: Renal ischemia/reperfusion caused increase of the fractional excretion of glucose and phosphate in ischemia-induced animals, which was prevented by Radix Glycyrrhizae extract treatment. Ischemia/reperfusion increased lipid peroxidation, which was prevented and morphological changes also altered by Radix Glycyrrhizae pharmacopuncture administration. Conclusions: These results indicate that lipid peroxidation plays a critical role in ischemia-induced acute renal failure and Glycyrrhizae Radix pharmacopuncture exerts the protective effect against acute renal failure induced by renal ischemia/reperfusion

    Z₃-Vestigial Nematic Order Due to Superconducting Fluctuations in the Doped Topological Insulators NbₓBi₂Se₃ and CuₓBi₂Se₃

    Get PDF
    A state of matter with a multi-component order parameter can give rise to vestigial order. In the vestigial phase, the primary order is only partially melted, leaving a remaining symmetry breaking behind, an effect driven by strong classical or quantum fluctuations. Vestigial states due to primary spin and charge-density-wave order have been discussed in iron-based and cuprate materials. Here we present the observation of a partially melted superconductivity in which pairing fluctuations condense at a separate phase transition and form a nematic state with broken Z3, i.e., three-state Potts-model symmetry. Thermal expansion, specific heat and magnetization measurements of the doped topological insulators NbxBi2Se3 and CuxBi2Se3 reveal that this symmetry breaking occurs at Tnem ≃ 3.8K above Tc ≃ 3.25K, along with an onset of superconducting fluctuations. Thus, before Cooper pairs establish long-range coherence at Tc, they fluctuate in a way that breaks the rotational invariance at Tnem and induces a crystalline distortion

    Fusion Assessment of Oblique Lumbar Interbody Fusion Using Demineralized Bone Matrix: A 2-Year Prospective Study

    Get PDF
    Objective Although several studies have reported successful fusion rates after oblique lumbar interbody fusion (OLIF) using allografts or dimerized bone matrix (DBM) instead of autografts, whether OLIF can achieve satisfactory solid fusion without the use of autografts remains unclear. This study investigated the real fusion rates after OLIF using allografts and DBM, which were evaluated using both dynamic radiographs and computed tomography scans. Methods We enrolled 79 consecutive patients who underwent minimally invasive OLIF followed by percutaneous pedicle screw fixation. All patients were treated with OLIF between L2 and L5 and underwent radiographic and clinical follow-ups at 12, 18, and 24 months after surgery. Radiographic assessment of fusion was performed using the modified BrantigaSteffee-Fraser (mBSF) scale, which was categorized as follows: grades I (radiographic pseudoarthrosis), II (indeterminate fusion), and III (solid radiographic fusion). Other radiologic and clinical outcomes were evaluated using the following parameters: vertebral slippage distance, disc height, subsidence, Oswestry Disability Index (ODI), and visual analogue scale (VAS). Results Clinical outcomes demonstrated significant improvements in the VAS scores for back pain, leg pain, and ODI after surgery. Subsidence was present in 34 cases (35.4%) at 12 months postoperatively, which increased to 47.9% and reached 50.0% at 1.5 years and 2 years after surgery, respectively. The solid fusion rate after OLIF was 32.3% at 1 year, increased to 58.3% at 1.5 years, and reached 72.9% at 2 years. Radiographic pseudoarthrosis was 24.0% at 1 year, which decreased to 6.3% at 1.5 years and 3.1% at 2 years. Conclusion OLIF is a safe and effective surgical procedure for the treatment of degenerative lumbar diseases. The mBSF scale, which simultaneously evaluates both dynamic angles and bone bridge formation, offers great reliability for the radiological assessment of fusion. Moreover, OLIF using allografts and DBM, which is performed on one or 2 levels at L2–5, can achieve satisfactory fusion rates within 2 years after surgery
    • …
    corecore