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Abstract: For any positive integer r, the r-truncated ( or r-associated ) Stirling number of the second
kind S (r)

2 (n, k) enumerates the number of partitions of the set {1, 2, 3, . . . , n} into k non-empty disjoint
subsets, such that each subset contains at least r elements. We introduce the degenerate r-truncated
Stirling numbers of the second kind and of the first kind. They are degenerate versions of the r-
truncated Stirling numbers of the second kind and of the first kind, and reduce to the degenerate Stirling
numbers of the second kind and of the first kind for r = 1. Our aim is to derive recurrence relations for
both of those numbers.
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1. Introduction and preliminaries

Explorations for the degenerate versions of some special numbers and polynomials have become
lively interests for some mathematicians in recent years, which began from the pioneering work of
Carlitz (see [1,2]). These have been done by employing various methods, such as generating
functions, combinatorial methods, p-adic analysis, umbral calculus, operator theory, differential
equations, special functions, probability theory and analytic number theory (see [5,9–13,16,17] and
the references therein).

The Stirling number of the second kind S 2(n, k) enumerates the number of partitions of the set
[n] = {1, 2, . . . , n} into k nonempty disjoint sets, while the r-truncated( or r-associated ) Stirling number
of the second kind S (r)

2 (n, k) counts the number of partitions of the set [n] into k non-empty disjoint
subsets, such that each subset contains at least r elements, for any positive integer r. The reader refers
to [7] for further details on the r-associated Stirling numbers of the first kind and of the second kind.
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Our aim is to introduce the degenerate r-truncated Stirling numbers of the second kind and the first
kind and to derive their recurrence relations. They are degenerate versions of the r-truncated Stirling
numbers of the second kind and of the first kind, and reduce to the degenerate Stirling numbers of the
second kind and of the first kind for r = 1. Here, we mention that the degenerate Stirling numbers
of both kinds appear very frequently when one studies various degenerate versions of some special
numbers and polynomials.

The outline of this paper is as follows. In Section 1, we recall the definitions and recurrence relations
of the classical, the degenerate and the r-truncated Stirling numbers of both kinds. Section 2 is the main
result of this paper. We introduce the degenerate r-truncated Stirling numbers of the second kind and
express the degenerate r-truncated Bell polynomials in terms of the degenerate r-truncated Stirling
numbers of the second kind. In Theorem 2, we derive a recurrence relation for the degenerate Stirling
numbers of the second kind. We also introduce the degenerate r-truncated Stirling numbers of the first
kind and deduce a recurrence relation for those numbers in Theorem 4. For the rest of this section, we
recall the facts that are needed throughout this paper.

For any nonzero λ ∈ R, the degenerate exponentials are defined by

ex
λ(t) = (1 + λt)

x
λ =

∞∑
n=0

(x)n,λ

n!
tn, eλ(t) = e(1)

λ (t), (see [1, 2]), (1.1)

where
(x)0,λ = 1, (x)n,λ = x(x − λ) · · · (x − (n − 1)λ), (n ≥ 1), (see [10, 11]). (1.2)

Let logλ t be the compositional inverse of eλ(t), called the degenerate logarithm, such that logλ(eλ(t)) =
eλ(logλ(t)) = t.

Then, we have

logλ(1 + t) =
∞∑

n=1

(1)n,1/λλ
n−1

n!
tn, (see [9]). (1.3)

Note that lim
λ→0

eλ(t) = et, lim
λ→0

logλ(1 + t) = log(1 + t).
For k ≥ 0, the Stirling numbers of the first kind are defined by

1
k!

(
log(1 + t)

)k
=

∞∑
n=k

S 1(n, k)
tn

n!
, (k ≥ 0), (see [3, 13, 14, 17]). (1.4)

The Stirling numbers of the second kind are given by

1
k!

(
et − 1

)k
=

∞∑
n=k

S 2(n, k)
tn

n!
, (see [5, 6, 18, 19, 20]). (1.5)

From (1.4) and (1.5), we have for n, k ≥ 0, with n ≥ k (see [10,15,18])

S 1(n + 1, k) = S 1(n, k − 1) − nS 1(n, k), (1.6)
S 2(n + 1, k) = S 2(n, k − 1) + kS 2(n, k).

Recently, the degenerate Stirling numbers of the first kind and of the second kind were respectively
defined by

1
k!

(
logλ(1 + t)

)k
=

∞∑
n=k

S 1,λ(n, k)
tn

n!
, (1.7)
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and
1
k!

(
eλ(t) − 1

)k
=

∞∑
n=k

S 2,λ(n, k)
tn

n!
, (see [9]), (1.8)

where k is a non-negative integer.
By (1.7) and (1.8), we get

S 1,λ(n + 1, k) = S 1,λ(n, k − 1) + (kλ − n)S 1,λ(n, k), (1.9)
S 2,λ(n + 1, k) = S 2,λ(n, k − 1) + (k − nλ)S 2,λ(n, k),

where n, k ≥ 0 with n ≥ k (see [9]).
Note that lim

λ→0
S 1,λ(n, k) = S 1(n, k), lim

λ→0
S 2,λ(n, k) = S 2(n, k).

The generating function of the r-truncated Stirling numbers of the second kind is given by

1
k!

(
et −

r−1∑
l=0

tl

l!

)k

=

∞∑
n=rk

S (r)
2 (n, k)

tn

n!
, (see [4, 6, 7, 8]). (1.10)

Thus, by (1.10), we obtain the recursion formula of S (r)
2 (n, k), for n, k ≥ 0 with n ≥ rk, which is

given by

S (r)
2 (n, k) = kS (r)

2 (n − 1, k) +
(
n − 1
r − 1

)
S (r)

2 (n − r, k − 1), (1.11)

with the initial condition S (r)
2 (n, k) = 0 if n < kr and S (r)

2 (n, k) = (rk)!
k!(r!)k if n = rk.

2. Degenerate r-truncated ( or r-associated ) Stirling numbers

As degenerate versions of the r-truncated Stirling numbers of the second kind, we consider the
degenerate r-truncated Stirling numbers of the second kind given by

1
k!

(
eλ(t) −

r−1∑
l=0

(1)l,λ

l!
tl
)k

=

∞∑
n=kr

S (r)
2,λ(n, k)

tn

n!
, (2.1)

where r ∈ N and k is a non-negative integer.
From (2.1), we note that

S (r)
2,λ(n, k) =

1
k!

∑
l1+···+lk=n

li≥r

n!(1)l1,λ(1)l2,λ · · · (1)lk ,λ

l1!l2! · · · lk!
(2.2)

=
1
k!

k∑
m=0

(
k
m

)
(−1)m

r−1∑
l1,l2,...,lm=0

n!
(∏m

i=1(1)l j,λ

)
(k − m)n−l1−l2−···−lm,λ

l1!l2! · · · lm!(n − l1 − l2 − · · · − lm)!
,

where n ≥ kr ≥ 0, k, r ≥ 0.
Note that S (r)

2,λ(n, k) = 0 if n < kr and S (r)
2,λ(rk, k) = (rk)!((1)r,λ)k

k!(r!)k .
We define the degenerate r-truncated Bell polynomials as

ex
(

eλ(t)−
∑r−1

l=0
(1)l,λ

l! tl
)
=

∞∑
n=0

ϕ(r)
n,λ(x)

tn

n!
, (r ∈ N). (2.3)
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Thus, by (2.1) and (2.3), we have

∞∑
n=0

ϕ(r)
n,λ(x)

tn

n!
=

∞∑
k=0

xk 1
k!

(
eλ(t) −

r−1∑
l=0

(1)l,λ

l!
tl
)k

=

∞∑
k=0

xk
∞∑

n=kr

S (r)
2,λ(n, k)

tn

n!

=

∞∑
n=0

[ n
r ]∑

k=0

xkS (r)
2,λ(n, k)

tn

n!
,

where [x] denotes the greatest integer not exceeding x. Therefore, we obtain the following theorem.

Theorem 1. For any integers n, r with n ≥ 0, r ≥ 1, we have

ϕ(r)
n,λ(x) =

[ n
r ]∑

k=0

xkS (r)
2,λ(n, k).

Now, we want to find a recursion formula for the degenerate r-truncated Stirling numbers of the
second kind.

Taking the derivative with respect to t on both sides of (2.1), we obtain

∞∑
n=kr−1

S (r)
2,λ(n + 1, k)

tn

n!
=

∞∑
n=kr

S (r)
2,λ(n, k)

tn−1

(n − 1)!
(2.4)

=
d
dt

1
k!

(
eλ(t) −

r−1∑
l=0

(1)l,λ

l!
tl
)k

.

Here we note that

d
dt

1
k!

(
eλ(t) −

r−1∑
l=0

(1)l,λ

l!
tl
)k

(2.5)

=
k
k!

(
eλ(t) −

r−1∑
l=0

(1)l,λ

l!
tl
)k−1(

e1−λ
λ (t) −

r−1∑
l=1

(1)l,λ

l!
ltl−1

)
=

1
(k − 1)!

(
eλ(t) −

r−1∑
l=0

(1)l,λ

l!
tl
)k−1(

eλ(t) − (1 + λt)
r−1∑
l=1

(1)l,λ

(l − 1)!
tl−1

) 1
1 + λt

.

For the derivation of (2.6), we introduce the following notation

Er
λ,k−1 =

1
(k − 1)!

(
eλ(t) −

r−1∑
l=0

(1)l,λ

l!
tl
)k−1

.

Then, by (2.4) and (2.5), we get

∞∑
n=kr−1

{
S (r)

2,λ(n + 1, k) + nλS (r)
2,λ(n, k)

} tn

n!
= (1 + λt)

∞∑
n=kr−1

S (r)
2,λ(n + 1, k)

tn

n!
(2.6)
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= Er
λ,k−1

(
eλ(t) −

r−2∑
l=0

(1)l+1,λ

l!
tl − λ

r−1∑
l=1

(1)l,λ

(l − 1)!
tl
)

= Er
λ,k−1

(
eλ(t) −

r−2∑
l=0

(1)l,λ

l!
(1 − λl)tl − λ

r−1∑
l=1

(1)l,λ

(l − 1)!
tl
)

= Er
λ,k−1

(
eλ(t) −

r−1∑
l=0

(1)l,λ

l!
tl
)
+ Er

λ,k−1

( 1
(r − 1)!

(1)r−1,λtr−1
)

+ Er
λ,k−1

(
λ

r−2∑
l=0

(1)l,λ

l!
ltl − λ

r−1∑
l=0

(1)l,λ

l!
ltl

)
=

k
k!

(
eλ(t) −

r−1∑
l=0

(1)l,λ

l!
tl
)k

+ Er
λ,k−1

( (1)r−1,λtr−1

(r − 1)!

)
− λEr

λ,k−1

( (1)r−1,λ

(r − 1)!
(r − 1)tr−1

)
= k

∞∑
n=kr

S (r)
2,λ(n, k)

tn

n!
+

∞∑
n=r(k−1)

S (r)
2,λ(n, k − 1)

tn

n!
(1)r−1,λ

(r − 1)!
tr−1

− λ
(r − 1)(1)r−1,λ

(r − 1)!

∞∑
n=r(k−1)

S (r)
2,λ(n, k − 1)

tn

n!
tr−1

=

∞∑
n=kr−1

{
kS (r)

2,λ(n, k) + (1)r−1,λ

(
n

r − 1

)
S (r)

2,λ(n − r + 1, k − 1)

− λ(r − 1)(1)r−1,λ

(
n

r − 1

)
S (r)

2,λ(n − r + 1, k − 1)
} tn

n!
.

Comparing the coefficients on both sides of (2.6), we have the following theorem.

Theorem 2. For n, k ≥ 0 with n ≥ kr − 1, we have

S (r)
2,λ(n + 1, k) = (k − nλ)S (r)

2,λ(n, k) + (1)r−1,λ

(
n

r − 1

)
S (r)

2,λ(n − r + 1, k − 1)

− λ(r − 1)(1)r−1,λ

(
n

r − 1

)
S (r)

2,λ(n − r + 1, k − 1).

Corollary 3. If r = 1 in Theorem 2, then we have

S (1)
2,λ(n + 1, k) = (k − nλ)S (1)

2,λ(n, k) + S (1)
2,λ(n, k − 1), (2.7)

where n, k ≥ 0 with n ≥ k − 1. So our result agrees with the fact in (1.9), as S (1)
2,λ(n, k) = S 2,λ(n, k).

Now, we define the degenerate r-truncated Stirling numbers of the first kind as

1
k!

(
logλ(1 + t) −

r−1∑
l=1

(1)l,1/λλ
l−1

l!
tl
)k

=

∞∑
n=kr

S (r)
1,λ(n, k)

tn

n!
, (2.8)
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where k is a nonnegative integer and r ≥ 1.
Taking the derivative with respect to t on both sides of (2.8), we get

∞∑
n=kr−1

S (r)
1,λ(n + 1, k)

tn

n!
=

∞∑
n=kr

S (r)
1,λ(n, k)

tn−1

(n − 1)!
(2.9)

=
d
dt

1
k!

(
logλ(1 + t) −

r−1∑
l=1

(1)l,1/λ

l!
λl−1tl

)k

.

Here we observe that

d
dt

1
k!

(
logλ(1 + t) −

r−1∑
l=1

(1)l,1/λ

l!
λl−1tl

)k

(2.10)

=
k
k!

(
logλ(1 + t) −

r−1∑
l=1

(1)l,1/λ

l!
λl−1tl

)k−1( (1 + t)λ

1 + t
−

r−1∑
l=1

(1)l,1/λ

(l − 1)!
λl−1tl−1

)
.

For the derivation of (2.11), we introduce the following notation

Lr
λ,k−1 =

1
(k − 1)!

(
logλ(1 + t) −

r−1∑
l=1

(1)l,1/λ

l!
λl−1tl

)k−1

.

Then, by (2.9) and (2.10), we get

∞∑
n=kr−1

S (r)
1,λ(n + 1, k)

tn

n!
(1 + t) (2.11)

= Lr
λ,k−1

(
(1 + t)λ −

r−1∑
l=1

(1)l,1/λ

(l − 1)!
λl−1tl−1(1 + t)

)
= Lr

λ,k−1

(
(1 + t)λ −

r−2∑
l=0

(1)l+1,1/λ

l!
λltl −

r−1∑
l=1

(1)l,1/λ

l!
lλl−1tl

)
= Lr

λ,k−1

(
(1 + t)λ −

r−2∑
l=0

(1)l,1/λ

(
1 −

l
λ

)
λl tl

l!
−

r−1∑
l=1

(1)l,1/λ

l!
λl−1ltl

)
= Lr

λ,k−1

(
(1 + t)λ − 1 − λ

r−2∑
l=1

λl−1(1)l,1/λ

l!
tl +

r−2∑
l=0

(1)l,1/λλ
l−1l

tl

l!

)
− Lr

λ,k−1

( r−1∑
l=1

(1)l,1/λ

l!
λl−1ltl

)
= λLr

λ,k−1

(
logλ(1 + t) −

r−1∑
l=1

(1)l,1/λ

l!
λl−1tl

)
+ λr−1 (1)r−1,1/λ

(r − 1)!
Lr
λ,k−1tr−1

−
(r − 1)(1)r−1,1/λ

(r − 1)!
λr−2Lr

λ,k−1tr−1

AIMS Mathematics Volume 8, Issue 11, 25957–25965.



25963

= kλ
∞∑

n=kr

S (r)
1,λ(n, k)

tn

n!
+ λr−1(1)r−1,1/λ

∞∑
n=kr−1

(
n

r − 1

)
S (r)

1,λ(n − r + 1, k − 1)
tn

n!

− (r − 1)(1)r−1,1/λλ
r−2

∞∑
n=kr−1

(
n

r − 1

)
S (r)

1,λ(n − r + 1, k − 1)
tn

n!

=

∞∑
n=kr−1

{
kλS (r)

1,λ(n, k) + λr−1(1)r−1,1/λ

(
n

r − 1

)
S (r)

1,λ(n − r + 1, k − 1)

− (r − 1)(1)r−1,1/λλ
r−2

(
n

r − 1

)
S (r)

1,λ(n − r + 1, k − 1)
} tn

n!
.

On the other hand, by simple calculation, we get
∞∑

n=kr−1

S (r)
1,λ(n + 1, k)

tn

n!
(1 + t) (2.12)

=

∞∑
n=kr−1

S (r)
1,λ(n + 1, k)

tn

n!
+

∞∑
n=kr

S (r)
1,λ(n, k)n

tn

n!

=

∞∑
n=kr−1

(
S (r)

1,λ(n + 1, k) + nS (r)
1,λ(n, k)

) tn

n!
.

From (2.11) and (2.12), we obtain the following theorem.

Theorem 4. Let r ∈ N with r ≥ 1. Then, for n, k ≥ 0 with n ≥ kr − 1, we have

S (r)
1,λ(n + 1, k) + nS (r)

1,λ(n, k)

= kλS (r)
1,λ(n, k) + (λ − r + 1)(1)r−1,1/λλ

r−2
(

n
r − 1

)
S (r)

1,λ(n − r + 1, k − 1).

Corollary 5. If r = 1 in Theorem 4, then we have

S (1)
1,λ(n + 1, k) = (kλ − n)S (1)

1,λ(n, k) + S (1)
1,λ(n, k − 1), (2.13)

where n, k ≥ 0 with n ≥ k − 1. So our result agrees with the fact in (1.9), as S (1)
1,λ(n, k) = S 1,λ(n, k).

3. Conclusions

In recent years, studying degenerate versions of some special numbers and polynomials have
drawn the attention of many mathematicians with their regained interests, not only in combinatorial
and arithmetical properties but also in applications to differential equations, identities of symmetry
and probability theory.

In this paper, we introduced the degenerate r-truncated Stirling numbers of the second kind and
the first kind and derived their recurrence relations. They are degenerate versions of the r-truncated
Stirling numbers of the second kind and the first kind, and reduce to the degenerate Stirling numbers
of the second kind and the first kind for r = 1.

As one of our future research projects, we would like to continue to explore degenerate versions of
some special numbers and polynomials and their applications to physics, science and engineering.
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