326 research outputs found

    Asymptotics and optimal bandwidth selection for highest density region estimation

    Get PDF
    We study kernel estimation of highest-density regions (HDR). Our main contributions are two-fold. First, we derive a uniform-in-bandwidth asymptotic approximation to a risk that is appropriate for HDR estimation. This approximation is then used to derive a bandwidth selection rule for HDR estimation possessing attractive asymptotic properties. We also present the results of numerical studies that illustrate the benefits of our theory and methodology.Comment: Published in at http://dx.doi.org/10.1214/09-AOS766 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Central Limit Theorem and convergence to stable laws in Mallows distance

    Full text link
    We give a new proof of the classical Central Limit Theorem, in the Mallows (LrL^r-Wasserstein) distance. Our proof is elementary in the sense that it does not require complex analysis, but rather makes use of a simple subadditive inequality related to this metric. The key is to analyse the case where equality holds. We provide some results concerning rates of convergence. We also consider convergence to stable distributions, and obtain a bound on the rate of such convergence.Comment: 21 pages; improved version - one result strengthened, exposition improved, paper to appear in Bernoull

    LogConcDEAD: An R Package for Maximum Likelihood Estimation of a Multivariate Log-Concave Density

    Get PDF
    In this article we introduce the R package LogConcDEAD (Log-concave density estimation in arbitrary dimensions). Its main function is to compute the nonparametric maximum likelihood estimator of a log-concave density. Functions for plotting, sampling from the density estimate and evaluating the density estimate are provided. All of the functions available in the package are illustrated using simple, reproducible examples with simulated data.

    Efficient two-sample functional estimation and the super-oracle phenomenon

    Full text link
    We consider the estimation of two-sample integral functionals, of the type that occur naturally, for example, when the object of interest is a divergence between unknown probability densities. Our first main result is that, in wide generality, a weighted nearest neighbour estimator is efficient, in the sense of achieving the local asymptotic minimax lower bound. Moreover, we also prove a corresponding central limit theorem, which facilitates the construction of asymptotically valid confidence intervals for the functional, having asymptotically minimal width. One interesting consequence of our results is the discovery that, for certain functionals, the worst-case performance of our estimator may improve on that of the natural `oracle' estimator, which is given access to the values of the unknown densities at the observations.Comment: 82 page

    Importance Tempering

    Full text link
    Simulated tempering (ST) is an established Markov chain Monte Carlo (MCMC) method for sampling from a multimodal density π(θ)\pi(\theta). Typically, ST involves introducing an auxiliary variable kk taking values in a finite subset of [0,1][0,1] and indexing a set of tempered distributions, say πk(θ)π(θ)k\pi_k(\theta) \propto \pi(\theta)^k. In this case, small values of kk encourage better mixing, but samples from π\pi are only obtained when the joint chain for (θ,k)(\theta,k) reaches k=1k=1. However, the entire chain can be used to estimate expectations under π\pi of functions of interest, provided that importance sampling (IS) weights are calculated. Unfortunately this method, which we call importance tempering (IT), can disappoint. This is partly because the most immediately obvious implementation is na\"ive and can lead to high variance estimators. We derive a new optimal method for combining multiple IS estimators and prove that the resulting estimator has a highly desirable property related to the notion of effective sample size. We briefly report on the success of the optimal combination in two modelling scenarios requiring reversible-jump MCMC, where the na\"ive approach fails.Comment: 16 pages, 2 tables, significantly shortened from version 4 in response to referee comments, to appear in Statistics and Computin
    corecore