326 research outputs found
Asymptotics and optimal bandwidth selection for highest density region estimation
We study kernel estimation of highest-density regions (HDR). Our main
contributions are two-fold. First, we derive a uniform-in-bandwidth asymptotic
approximation to a risk that is appropriate for HDR estimation. This
approximation is then used to derive a bandwidth selection rule for HDR
estimation possessing attractive asymptotic properties. We also present the
results of numerical studies that illustrate the benefits of our theory and
methodology.Comment: Published in at http://dx.doi.org/10.1214/09-AOS766 the Annals of
Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical
Statistics (http://www.imstat.org
Central Limit Theorem and convergence to stable laws in Mallows distance
We give a new proof of the classical Central Limit Theorem, in the Mallows
(-Wasserstein) distance. Our proof is elementary in the sense that it does
not require complex analysis, but rather makes use of a simple subadditive
inequality related to this metric. The key is to analyse the case where
equality holds. We provide some results concerning rates of convergence. We
also consider convergence to stable distributions, and obtain a bound on the
rate of such convergence.Comment: 21 pages; improved version - one result strengthened, exposition
improved, paper to appear in Bernoull
LogConcDEAD: An R Package for Maximum Likelihood Estimation of a Multivariate Log-Concave Density
In this article we introduce the R package LogConcDEAD (Log-concave density estimation in arbitrary dimensions). Its main function is to compute the nonparametric maximum likelihood estimator of a log-concave density. Functions for plotting, sampling from the density estimate and evaluating the density estimate are provided. All of the functions available in the package are illustrated using simple, reproducible examples with simulated data.
Efficient two-sample functional estimation and the super-oracle phenomenon
We consider the estimation of two-sample integral functionals, of the type
that occur naturally, for example, when the object of interest is a divergence
between unknown probability densities. Our first main result is that, in wide
generality, a weighted nearest neighbour estimator is efficient, in the sense
of achieving the local asymptotic minimax lower bound. Moreover, we also prove
a corresponding central limit theorem, which facilitates the construction of
asymptotically valid confidence intervals for the functional, having
asymptotically minimal width. One interesting consequence of our results is the
discovery that, for certain functionals, the worst-case performance of our
estimator may improve on that of the natural `oracle' estimator, which is given
access to the values of the unknown densities at the observations.Comment: 82 page
Importance Tempering
Simulated tempering (ST) is an established Markov chain Monte Carlo (MCMC)
method for sampling from a multimodal density . Typically, ST
involves introducing an auxiliary variable taking values in a finite subset
of and indexing a set of tempered distributions, say . In this case, small values of encourage better
mixing, but samples from are only obtained when the joint chain for
reaches . However, the entire chain can be used to estimate
expectations under of functions of interest, provided that importance
sampling (IS) weights are calculated. Unfortunately this method, which we call
importance tempering (IT), can disappoint. This is partly because the most
immediately obvious implementation is na\"ive and can lead to high variance
estimators. We derive a new optimal method for combining multiple IS estimators
and prove that the resulting estimator has a highly desirable property related
to the notion of effective sample size. We briefly report on the success of the
optimal combination in two modelling scenarios requiring reversible-jump MCMC,
where the na\"ive approach fails.Comment: 16 pages, 2 tables, significantly shortened from version 4 in
response to referee comments, to appear in Statistics and Computin
- …
