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ASYMPTOTICS AND OPTIMAL BANDWIDTH SELECTION FOR
HIGHEST DENSITY REGION ESTIMATION

BY R.J. SAMWORTH AND M.P. WAND

University of Cambridge and University of Wollongong

14th August, 2009

ABSTRACT

We study kernel estimation of highest density regions (HDR). Our main contributions are two-
fold. Firstly, we derive a uniform-in-bandwidth asymptotic approximation to a risk that is
appropriate for HDR estimation. This approximation is then used to derive a bandwidth selec-
tion rule for HDR estimation possessing attractive asymptotic properties. We also present the
results of numerical studies that illustrate the benefits of our theory and methodology.

Keywords: Density contour; Density level set; Kernel density estimator; Plug-in bandwidth
selection.

1 Introduction

A highest density region (HDR) for a measurement of interest is a region where the under-
lying density function exceeds some nominal threshold. Given a random sample from that
density, HDR estimation typically involves determination of regions where an estimated den-
sity is high. Kernel density estimation is the most common approach, but its performance is
heavily dependent on the choice of the bandwidth parameter. Automatic selection of a good
bandwidth for HDR estimation is the overarching goal of this article.

Figure 1 illustrates the bandwidth selection issue for HDR estimation. The left panel shows
five kernel density estimates based on random samples of size 1000 from the normal mixture
2
3N(0, 1) + 1

3N(0, 1
100) density (Density 4 of Marron and Wand, 1992). In each case the band-

width is chosen to minimise the integrated squared error (ISE). In the right panel the same
random samples are used but, instead, the bandwidths are chosen to minimise an error appro-
priate for estimation of the 20% HDR (defined formally in Section 2). This region is shown as
a thick horizontal line at the base of the plot. It is clear from Figure 1 that optimality for HDR
estimation is quite different from ISE-optimality. Low ISE requires that the two curves be close
to each other over the whole real line. However, good estimation of the 20% HDR only requires
that the 20% HDRs of the kernel density estimates are close to the true region. In particular,
the sharp mode of the underlying density has no bearing upon the HDR and there is no need
to estimate it well. For this density it is apparent that a bandwidth considerably larger than
ISE-optimal bandwidth is best for estimation of the 20% HDR.

In this article we study an asymptotic risk associated with kernel-based HDR estimation and
use our theory to develop a plug-in type bandwidth selector. Attractive asymptotic properties
of our bandwidth selector are established and good performance is illustrated on simulated
data. A self-contained function for use in the R environment (R Development Core Team, 2008)
is made available on the Internet.

The HDR estimation problem has an established literature. Contributions include Hartigan
(1987), Müller & Sawitzki (1991), Polonik (1995), Hyndman (1996), Tsybakov (1997), Baı́llo,
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Figure 1: Left panel: five kernel density estimates based on random samples of size 1000 simulated from
the density depicted by the dashed curve. Each estimate is based on the optimal bandwidth with respect
to integrated squared error. Right panel: same as the left panel except that the bandwidth is chosen to
minimise the error for estimation of the 20% highest density region. This region is shown as a thick
horizontal line at the base of the plot and its boundaries are shown as dashed vertical lines.

Cuesta-Albertos & Cuevas (2001), Baı́llo (2003), Cadre (2006), Jang (2006), Rigollet & Vert (2009)
and Mason & Polonik (2009). Mason & Polonik (2009) provide a thorough literature review
for the problem. Alternative terminology includes estimation of the density contours, density
level sets and excess mass regions. This literature is, however, mainly concerned with theoretical
results unconnected with the bandwidth selection problem. Jang (2006) is an applied paper on
the use of HDR estimation for astronomical sky surveys. However, the bandwidths used there
are chosen via classical ISE-based plug-in strategies. The present paper is, to our knowledge,
the first to derive theory and bandwidth selection rules that are specifically tailored to the HDR
estimation problem.

While our proposed practical bandwidth selector relies on asymptotic approximations, its de-
velopment comes at a time when sample sizes in applications that benefit from smoothing
techniques are becoming very large. The area of application that led to this research, flow cy-
tometry, typically has sample sizes in the hundreds of thousands. The astronomical application
in Jang (2006) involves sample sizes in the tens of thousands.

Section 2 presents an approximation to the HDR asymptotic risk. Numerical studies support
its use for bandwidth selection. In Section 3 we describe plug-in strategies for bandwidth se-
lection. Asymptotic performance results are established and a simulation study demonstrates
practical efficacy. We conclude with an example on daily temperature maxima in Melbourne,
Australia. Proofs are deferred to an appendix.
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2 Asymptotic Risk Results

Let f be a probability density function on the real line. For τ ∈ (0, 1), define

fτ = fτ (f) = inf
{
y ∈ (0,∞) :

∫ ∞

−∞
f(x)1{f(x)≥y} dx ≤ 1− τ

}
.

We callRτ = {x ∈ R : f(x) ≥ fτ} the 100(1−τ)% highest density region of f (cf. Hyndman, 1996).
If (Xn) is a sequence of independent random variables with density f , the kernel estimator of
f(x) based on X1, . . . , Xn is

f̂h(x) =
1
nh

n∑
i=1

K
(x−Xi

h

)
,

whereK : R → R satisfies
∫
K(x) dx = 1 and is called a kernel and h > 0 is called the bandwidth.

Let f̂h,τ = fτ (f̂h) denote the plug-in estimator of fτ , so that

f̂h,τ = inf
{
y ∈ (0,∞) :

∫ ∞

−∞
f̂h(x)1{f̂h(x)≥y} dx ≤ 1− τ

}
.

The corresponding plug-in estimator of Rτ is then R̂h,τ = {x ∈ R : f̂h(x) ≥ f̂h,τ}.

Given two Borel subsets A and B of R, we define their proximity through a measure on their
symmetric difference A4B = (A ∩ Bc) ∪ (Ac ∩ B). The particular measure µf we consider is
given by

µf (C) =
∫

C
f(x) dx,

for all Borel subsets C of R. The error µf (R̂h,τ4Rτ ) is then then the probability of an observa-
tion from f lying in precisely one of R̂h,τ and Rτ . Compared with Lebesgue measure, µf puts
more weight on regions where the data will tend to be denser. It also has the advantage of ad-
mitting a simple Monte Carlo approximation. This is important in higher dimensional settings
where exact computation of µf (C) is difficult.

In Theorem 1, we derive a uniform-in-bandwidth asymptotic expansion for the risk E{µf (R̂h,τ4Rτ )},
which can facilitate a theoretical, optimal choice of bandwidth (cf. Corollary 2). This in turn mo-
tivates practical bandwidth selection algorithms whose performance is studied in Theorems 3
and 4. We will make use of the following conditions on the underlying density, bandwidth
sequence and kernel:

(A1): f is uniformly continuous on R. There exist finitely many points x1 < . . . < x2r such
that f(xj) = fτ for j = 1, . . . , 2r, and moreover there exists δ > 0 such that f is twice
continuously differentiable in ∪r

j=1[x2j−1 − δ, x2j + δ] with f ′(x2j−1) > 0 and f ′(x2j) < 0
for j = 1, . . . , r.

(A2): Let h− = h−n and h+ = h+
n be non-negative sequences such that h− ≤ h+, such that

n(h−)4/
√

log(1/h−) → ∞ and such that h+ → 0 as n → ∞. Then h = hn is a sequence
with h−n ≤ hn ≤ h+

n for all n.

(A3): The kernel K is non-negative, continuously differentiable, of bounded variation, and
satisfies

∫
xK(x) dx = 0 and µ2(K) ≡

∫
x2K(x) dx < ∞. Moreover, K ′ is of bounded

variation, and satisfies
∫
K ′(x)2 dx <∞.

Assumption (A1) in particular implies that f has a γ-exponent with γ = 1 at level fτ – in other
words, there exists C > 0 such that

µf ({x ∈ R : |f(x)− fτ | ≤ ε}) ≤ Cε
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for sufficiently small ε > 0. This type of assumption is common in the literature for this prob-
lem – cf. Polonik (1995), Rigollet and Vert (2009). Although there are many parts to condi-
tion (A3), none is very restrictive. Under (A1), fτ is the unique positive real number satisfying∫
f(x)1{f(x)≥fτ} dx = 1 − τ . In fact, in the course of the proof of Theorem 1 below, we will

show that under conditions (A1), (A2) and (A3), f̂h,τ has an analogous property: that is, with
probability one, for all n sufficiently large, f̂h,τ is the unique positive real number satisfying∫

f̂h(x)1{f̂h(x)≥f̂h,τ} dx = 1− τ.

Let Φ and φ denote the standard normal distribution function and density function respectively
and write R(K) =

∫
K2(x) dx. Define the quantities

D1 =
1
2
µ2(K)

{ 2r∑
j=1

1
|f ′(xj)|

}−1[ 2r∑
j=1

f ′′(xj)
|f ′(xj)|

+
1
fτ

r∑
j=1

{f ′(x2j)− f ′(x2j−1)}
]
,

D2 = R(K)fτ

{ 2r∑
j=1

1
|f ′(xj)|

}−2 2r∑
j=1

1
f ′(xj)2

and D3,j =
R(K)fτ

|f ′(xj)|

{ 2r∑
k=1

1
|f ′(xk)|

}−1

, j = 1, . . . , 2r. (2.1)

Theorem 1. Assume (A1), (A2) and (A3). Then

E{µf (R̂h,τ4Rτ )} =
2r∑

j=1

[
B1,jφ(B2,jn

1/2h5/2)
(nh)1/2

+B3,jh
2{2Φ(B2,jn

1/2h5/2)−1}
]
+o

( 1
(nh)1/2

+h2
)

as n→∞, uniformly for h ∈ [h−, h+], where

B1,j = 2fτ
{R(K)fτ − 2D3,j +D2}1/2

|f ′(xj)|
, B2,j =

|12µ2(K)f ′′(xj)−D1|
{R(K)fτ − 2D3,j +D2}1/2

and

B3,j = fτ
|12µ2(K)f ′′(xj)−D1|

|f ′(xj)|
.

The nature of this result is somewhat different from the results in the existing literature, which
have tended to focus (sometimes in more general settings) on the order in probability or almost
surely of µf (R̂h,τ4Rτ ) or related measures (e.g. Baı́llo, Cuesta-Albertos & Cuevas (2001), Baı́llo
(2003)). More recent works have derived results on the limiting behaviour of suitably scaled
and/or centered versions of µf (R̂h,τ4Rτ ) (e.g. Cadre (2006), Mason & Polonik (2009)). Rigollet
& Vert (2009) provide a finite sample upper bound for the risk, uniformly over certain Hölder
classes, with an unspecified constant in the bound. While these theoretical results are certainly
of considerable interest, our aim in providing the asymptotic expansion in Theorem 1 is to
facilitate practical bandwidth selection algorithms for this problem – see Section 3.

In the course of the proof of Theorem 1, it is shown that

R(K)fτ − 2D3,j +D2 = lim
n→∞

(nh)Var(f̂h(xj)− f̂h,τ ) > 0,

so that B1,j is positive. Moreover B2,j and B3,j are non-negative, and will be positive except
in pathological circumstances. Assuming B2,j and B3,j are positive, it is easily seen from The-
orem 1 that for any sequence of bandwidths satisfying (A2), if nh5 is not bounded away from
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zero and infinity then n2/5E{µf (R̂h,τ4Rτ )} → ∞ along a sub-sequence. On the other hand,
if nh5 is bounded away from zero and infinity, then n2/5E{µf (R̂h,τ4Rτ )} is bounded. Notice
that all such sequences are permitted by the condition (A2). In certain circumstances, there is a
rather stronger conclusion:

Corollary 2. Assume (A1) and (A3) and that B2,j and B3,j are positive. Assume further that in (A1)
we have r = 1 and the underlying density f is symmetric about some point on the real line. Then there
exists a unique copt ∈ (0,∞), depending on f and K but not n, such that any sequence of bandwidths
(hopt) that minimises E{µf (R̂h,τ4Rτ )} satisfies

hopt = coptn
−1/5{1 + o(1)}

as n→∞.

Although the hypotheses on f in Corollary 2 are restrictive, we have not encountered signifi-
cant problems caused by multiple local minima of the risk function even when these hypothe-
ses are not satisfied.

2.1 Numerical Assessment of Risk Approximation

Theorem 1 yields the asymptotic risk approximation

E{µf (R̂h,τ4Rτ )} '
2r∑

j=1

[
B1,jφ(B2,jn

1/2h5/2)
(nh)1/2

+B3,jh
2{2Φ(B2,jn

1/2h5/2)− 1}
]
. (2.2)

In Section 3 we use the right-hand side of (2.2) to develop plug-in bandwidth selection strate-
gies. However, it is prudent to first assess the quality of this approximation to the risk. We now
do this through some numerical examples.

For a given f , h and τ , the risk E{µf (R̂h,τ4Rτ )} is very difficult to obtain exactly. Instead, we
work with a Monte Carlo approximation

1
M

M∑
i=1

µf (R̂[i]
h,τ4Rτ ) (2.3)

where R̂[1]
h,τ , . . . , R̂

[M ]
h,τ are M simulated realisations of R̂h,τ . For large M (2.3) serves as reason-

able proxy for E{µf (R̂h,τ4Rτ )} and is henceforth referred to as the ‘exact’ risk.

Figure 2 compares the asymptotic risk approximation with its ‘exact’ counterpart for n = 1000,
f corresponding to Densities 1–10 of Marron and Wand (1992) and τ = 0.5. The kernel K is set
to φ throughout and the Monte Carlo sample size is M = 100. For most of these densities the
asymptotic risk approximation is quite good for n = 1000. Densities 3 and 4 are the main ex-
ceptions; it appears that larger sample sizes are required for the leading terms to be dominant.
In particular, for these densities, the difficulty appears to be caused by very large values of |f ′|
and/or |f ′′| at the crossing points of f0.5 (for Density 4, the level f0.5 is very close to the rapid
transition from shallow to steep gradient seen in Figure 1).

In Figure 3 we repeated the calculations that produced Figure 2, but with τ set to 0.8 and
n = 100000. For several densities, including the one depicted in Figure 1, the estimand R0.8

corresponds to the fine detail of f . The asymptotic risk approximation is seen to be quite good
for these values of τ and n.
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Figure 2: Comparison of the ‘exact’ risk E{µf (R̂h,0.54R0.5)} and its asymptotic approximation for the
first ten density functions of Marron and Wand (1992) and n = 1000. In each panel, the ‘exact’ risk
is obtained by averaging 100 realisations of µf (R̂h,0.54R0.5) (shown as grey curves) and is shown as a
solid black curve. The dashed curve is the asymptotic risk approximation corresponding to the right hand
side of (2.2). Vertical lines pass through the minima of the ‘exact’ risk (solid line) and the asymptotic
risk (broken line).
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Figure 3: Comparison of the ‘exact’ risk E{µf (R̂h,0.84R0.8)} and its asymptotic approximation for the
first ten density functions of Marron and Wand (1992) and n = 100000. In each panel, the ‘exact’ risk
is obtained by averaging 100 realisations of µf (R̂h,0.84R0.8) (shown as grey curves) and is shown as a
solid black curve. The dashed curve is the asymptotic risk approximation corresponding to the right hand
side of (2.2). Vertical lines pass through the minima of the ‘exact’ risk (solid line) and the asymptotic
risk (broken line).

7



3 Bandwidth Selection

In this section, we assume that, as in Corollary 2, there exists a unique copt ∈ (0,∞) such
that any optimal bandwidth sequence satisfies hopt = coptn

−1/5{1 + o(1)}. In this case, copt

minimises the asymptotic risk, given by

AR(c) =
1

n2/5

2r∑
j=1

[
B1,j

c1/2
φ(B2,jc

5/2) +B3,jc
2{2Φ(B2,jc

5/2)− 1}
]
. (3.1)

In order to find a practical bandwidth selector, we seek an estimator ĉopt of copt. The natural
way to construct such an estimator is by using estimators D̂1, D̂2 and D̂3,j of D1, D2 and D3,j

respectively to obtain plug-in estimators B̂1,j , B̂2,j and B̂3,j of B1,j , B2,j and B3,j respectively.
These in turn can be used to find ĉopt = argminc∈(0,∞)ÂRn(c), where

ÂRn(c) =
1

n2/5

2r∑
j=1

[
B̂1,j

c1/2
φ(B̂2,jc

5/2) + B̂3,jc
2{2Φ(B̂2,jc

5/2)− 1}
]
. (3.2)

With probability one, the solution to this minimisation problem will be unique for large n
provided that AR′′(copt) > 0 and this solution can easily be found numerically. Our final
bandwidth selector is then ĥτHDR = ĉoptn

−1/5.

Note that we have not yet described how to construct the estimators D̂1, D̂2 and D̂3,j . Again,
we propose plug-in estimators, based on estimates of fτ as well as f ′(xj) and f ′′(xj) for j =
1, . . . , 2r. We assume the kernel K is smooth, and will construct kernel estimators f̂h0(x̂j,h0),
f̂ ′h1

(x̂j,h0) and f̂ ′′h2
(x̂j,h0) of fτ , f ′(xj) and f ′′(xj) respectively, where x̂j,h0 is an estimator of xj

described below. For the time being, we will use the same kernelK in all cases; this requirement
will be dropped later on. Even at this stage it will, however, be important to note that we can
use different bandwidths h0, h1 and h2. Recall (e.g. Wand and Jones, 1995, p.49) that, under
appropriate conditions, if hk � n−1/(2k+5) as n → ∞ then f̂ (k)

hk
(xj) − f (k)(xj) = Op(n−2/(2k+5))

and that this order cannot be improved for a non-negative kernel. Here we have used the
notation an � bn as n→∞ to mean 0 < lim infn→∞ |an/bn| ≤ lim supn→∞ |an/bn| <∞. Finally,
we observe that if h0 satisfies (A2), then with probability one, for all sufficiently large n there
exist x̂1,h0 < . . . x̂2r,h0 such that f̂h0(x̂j,h0) = f̂h0,τ for each j, and we use x̂j,h0 to estimate xj .
Our theoretical study of the performance of this bandwidth selector requires some additional
conditions:

(A4): f has four continuous derivatives in an open set containing each xj .

(A5): h0 � n−1/5, h1 � n−1/7 and h2 � n−1/9 as n→∞.

(A6): K has a bounded third derivative,K ′′ is of bounded variation and
∫
|x|3|K ′(x)|+x4|K ′′(x)| dx <

∞.

Theorem 3. Assume (A1) and (A3)–(A6) and that B2,j and B3,j are positive. Assume further that copt

is unique and that AR′′(copt) > 0. Then

ĥτHDR

hopt
= 1 +Op(n−2/9)

as n→∞. Moreover, recalling that ĥτHDR = ĉoptn
−1/5, we have

ÂRn(ĉopt)
AR(copt)

= 1 +Op(n−2/9).
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Examining the proof of Theorem 3 reveals that the rate of convergence to zero of the relative
error of ĥτHDR is determined by the rate at which we can estimate f ′′(xj) for j = 1, . . . , 2r. This
suggests that we might be able to obtain a faster rate of convergence by using a higher order
kernel to estimate f ′′(xj) (and in fact f ′(xj)). Recall that we call K an Sth order kernel if

1.
∫
K(x) dx = 1

2. µs(K) ≡
∫
xsK(x) dx = 0 for s = 1, . . . , S − 1

3. µS(K) ≡
∫
xSK(x) dx 6= 0 and

∫
|x|S |K(x)| dx <∞.

Higher order kernels refer to S > 2. The usual objection to the use of higher order kernels,
namely that such a kernel cannot be non-negative, is less significant when the aim is to estimate
derivatives of a density rather than the density itself. Let the kernels used to estimate f ′(xj) and
f ′′(xj) be denoted K1 and K2 respectively, and continue to denote the respective bandwidths
by h1 and h2. An improved rate of convergence of the relative error of our bandwidth selector
can be obtained by replacing conditions (A4), (A5) and (A6) with the following:

(A7): f has 12 continuous derivatives in an open set containing each xj .

(A8): h0 � n−1/5, h1 � n−1/15 and h2 � n−1/25 as n→∞.

(A9): K1 is a 6th order kernel and has a bounded second derivative withK1 andK ′
1 of bounded

variation and satisfying
∫
x6|K1(x)| + |x|7|K ′

1(x)| dx < ∞. Moreover, K2 is a 10th order
kernel and has a bounded third derivative with K2, K ′

2 and K ′′
2 of bounded variation and

satisfying
∫
x10|K2(x)|+ |x|11|K ′

2(x)|+ x12|K ′′
2 (x)| dx <∞.

We write ̂̂
hτHDR for the bandwidth selector obtained in a similar way to ĥτHDR, but using the

kernels K1 and K2 to estimate f ′(xj) and f ′′(xj) respectively in the definitions of D1, D2, D3,j ,
B1,j , B2,j and B3,j .

Theorem 4. Assume (A1), (A3), (A7)–(A9) and that B2,j and B3,j are positive. Assume further that
copt is unique and that AR′′(copt) > 0. Then

̂̂
hτHDR

hopt
= 1 +Op(n−2/5)

as n→∞. Moreover, writing ̂̂
hτHDR = ˆ̂coptn

−1/5, we have

ÂRn(ˆ̂copt)
AR(copt)

= 1 +Op(n−2/5).

It is clear that Theorem 3 represents a relatively weak conclusion under relatively weak condi-
tions, while Theorem 4 represents a stronger conclusion under strong conditions. Intermediate
results are also possible, but seem to be of little practical interest.

3.1 An Effective Practical Bandwidth Selector

We confine our development of a practical consistent bandwidth selector to the scenario where
f satisfies weaker smoothness conditions of Theorem 3. Our end-product is a fast-to-compute

9



bandwidth selector for HDR estimation that possesses the asymptotic properties conveyed by
Theorem 3, performs well in simulations, and is readily implemented in R. Indeed, as detailed
below, an R function for our procedure is available on the Internet.

The pilot bandwidths h0, h1 and h2 are estimated using direct plug-in strategies with two levels
of kernel functional estimation. Chapter 3 of Wand and Jones (1995) provides details on this
general approach to bandwidth selection. In the case of h0 the approach is similar to those
proposed by Park and Marron (1990) and Sheather and Jones (1991). Direct plug-in bandwidth
selection strategies for density functions and their derivatives involve estimation of functionals
of the form

ψr =
∫ ∞

−∞
f (r)(x)f(x) dx.

Kernel estimators of ψr take the form

ψ̂r(g) = n−2g−r−1
n∑

i=1

n∑
j=1

L(r){(Xi −Xj)/g}

where L is a sufficiently smooth 2nd-order kernel function and g > 0 is a bandwidth parameter.
Multi-level plug-in strategies use the fact that the asymptotically optimal g, with respect to the
mean squared error of ψ̂r(g), is [−2L(r)(0)/{nψr+2

∫
u2L(u) du}]1/(r+3). To get the algorithm

started we also require normal scale estimates of ψr, based on the assumption that f is aN(µ, σ2)
density. Normal scale estimates of ψr take the form

ψ̂NS
r =

(−1)r/2r!
(2σ̂)r+1(r/2)!π1/2

.

Throughout we take K = L = φ, the standard normal kernel. The full algorithm is:

1. The inputs are the random sample X1, . . . , Xn and parameter 0 < τ < 1 speci-
fying the required HDR.

2. Let σ̂ = min(sample standard deviation, (sample interquartile range)/1.349)
be a robust estimate of scale. (The interquartile range for the standard normal
density is approximately 1.349, so this factor ensures approximate unbiased
for normally distributed data.)

3. Estimate ψ8, ψ10 and ψ12 using normal scale estimates. Explicit expressions for
these are ψ̂NS

8 = 105/(32π1/2σ̂9), ψ̂NS
10 = −945/(64π1/2σ̂11) and ψ̂NS

12 = 10395/(128π1/2σ̂13).

4. Estimate ψ6, ψ8 and ψ10 using kernel estimates ψ̂6(g0,1), ψ̂8(g1,1) and ψ̂10(g1,1)
where g0,1 = {30/(ψ̂NS

8 n)}1/9, g1,1 = {−210/(ψ̂NS
10n)}1/11 and g1,2 = {1890/(ψ̂NS

12n)}1/13.

5. Estimate ψ4, ψ6 and ψ8 using kernel estimates ψ̂4(g0,2), ψ̂6(g1,2) and ψ̂8(g2,2)
where g0,2 = [6/{ψ̂8(g0,1)n}]1/7, g1,2 = [−30/{ψ̂10(g1,1)n}]1/9 and
g2,2 = [210/{ψ̂12(g1,2)n}]1/11.

6. Obtain direct plug-in bandwidths ĥ(r) for estimation of f (r) by replacing ψr+2

in the optimal expression, with respect to asymptotic mean integrated squared
error, by ψ̂r+2(gr,2). Explicit expressions are ĥ0 = [1/{2π1/2ψ̂4(g0,2)n}]1/5, ĥ1 =
[−3/{4π1/2ψ̂6(g1,2)n}]1/7 and ĥ2 = [15/{8π1/2ψ̂8(g2,2)n}]1/9.

7. Obtain pilot of estimates of f , f ′ and f ′′ via Gaussian kernel estimates based
on these bandwidths: f̂bh0

(·), f̂ ′bh1
(·) and f̂ ′′bh2

(·).

8. Use f̂bh0
(·) to obtain pilot estimates of fτ , r and x1, . . . , x2r.

9. Substitute the estimates from Steps 6 and 7 into the expressions for B1,j , B2,j

and B3,j to obtain estimates B̂1,j , B̂2,j and B̂3,j .

10



10. The selected bandwidth for Gaussian kernel estimation of the 100(1−τ)% HDR
is ĥτHDR = ĉoptn

−1/5 where ĉopt = argminc∈(0,∞)ÂRn(c), where ÂRn was de-
fined in (3.2).

Binned approximations to ψ̂r(g) (cf. González-Manteiga, Sanchéz-Sellero, and Wand, 1996)
are strongly recommended to allow fast processing of large samples. An R function HDRbw()
that implements the above algorithm has been placed on the second author’s ‘R Functions and
Packages’ web-page. At the time of writing the relevant web-site has a link on the address
http://www.uow.edu.au/˜mwand. In addition, the code has been submitted to the authors
of the R package hdrcde (Hyndman and Einbeck, 2009), which supports HDR estimation.

3.2 Simulation Results

We ran a simulation study in which the performance of ĥτHDR was compared with an estab-
lished ISE-based selector: least squares cross validation (Bowman, 1982; Bowman, 1984), which
we denote by ĥLSCV. The number of replications in the simulation study was 250. The HDR
estimation error µf (R̂h,τ4Rτ ) was used throughout the study. Figures 4 (n = 1000) and 5
(n = 100000) summarise the results for the situation where the true f is the normal mixture
density from Section 1 and Figure 1. The improvement gained from using the HDR-tailored
bandwidth selector is apparent from the graphics, especially for the lower values of τ . Wilcoxon
tests applied to the error ratios showed statistically significant improvement of ĥτHDR at the
5% level for τ = 0.2, 0.5 and 0.8 when n = 100000. For n = 1000, ĥτHDR performed better for
τ = 0.2, 0.5, while ĥLSCV did better for τ = 0.8. This latter result is not a big surprise since good
estimation ofR0.8 requires good estimation of the finger-shaped modal region and this, in turn,
requires good ISE performance.

We performed similar simulation comparison for the remaining Densities 1–10 of Marron and
Wand (1992). For n = 1000 the performance of ĥτHDR was better than ĥLSCV for Densities 1–5;
whereas ĥLSCV did better for Densities 6–10. This suggests that the asymptotics on which ĥτHDR
relies have not ‘kicked in’ at n = 1000 for these more intricate density functions. We suspect
that more sophisticated pilot estimation might improve matters for HDR-based bandwidth
selection for lower sample sizes. The n = 100000 simulations show superior performance of
ĥτHDR, especially τ = 0.8 where it is the ‘winner’ for 9 out of the 10 density functions. The
overarching conclusion is that for common density estimation situations ĥτHDR is better than
ĥLSCV.

3.3 Application to Daily Temperature Data

We conclude with an application to data on daily maximum temperatures in Melbourne, Aus-
tralia, for the years 1981–1990. These data were used in Hyndman (1996) to illustrate HDR
principles. We revisit them armed with the automatic HDR estimation technology described in
Section 3.1 Of interest are the conditional densities

tomorrow’s temperature given today’s temperature is within a fixed interval.

The intervals for the ‘today’s temperature’ values are, in degrees Celsius,

[5, 10), [10, 15), . . . , [40, 45).

Figure 6 shows the kernel estimates of the 20%, 50% and 80% HDRs with bandwidths chosen
using the rule ĥτHDR as detailed in Section 3.1. Some interesting bimodality in ‘tomorrow’s

11
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Figure 4: Summary of simulation comparison between ĥτHDR and ĥLSCV for τ = 0.2, 0.5 and
0.8 and 250 samples of size 1000 generated from Density 4 of Marron and Wand (1992). The
upper panels are scatterplots of the errors µf (R̂h,τ4Rτ ) for h = ĥLSCV on the vertical axes
and h = ĥτHDR on the horizontal axes. The lower panels are kernel density estimates of
log10((error for h = ĥτHDR)/(error for h = ĥLSCV)).

temperature’ is apparent when conditioned on today’s temperature being in the 30–40 degrees
Celsius range.
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Figure 5: Summary of simulation comparison between ĥτHDR and ĥLSCV for τ = 0.2, 0.5 and
0.8 and 250 samples of size 100000 generated from Density 4 of Marron and Wand (1992).
The upper panels are scatterplots of the errors µf (R̂h,τ4Rτ ) for h = ĥLSCV on the vertical
axes and h = ĥτHDR on the horizontal axes. The lower panels are kernel density estimates of
log10((error for h = ĥτHDR)/(error for h = ĥLSCV)).

Appendix: Proofs

Proof of Theorem 1

Throughout the proof, it is convenient to write x0 = −∞ and x2r+1 = ∞ and adopt the con-
vention that x0 + a = −∞ and x2r+1 + a = ∞ for all a ∈ R. Observe that

µf (R̂h,τ4Rτ ) =
∫ ∞

−∞
f(x)

∣∣1{f̂h(x)≥f̂h,τ} − 1{f(x)≥fτ}
∣∣ dx

=
r∑

j=0

∫ x2j+1

x2j

f(x)1{f̂h(x)≥f̂h,τ} dx+
r∑

j=1

∫ x2j

x2j−1

f(x)1{f̂h(x)<f̂h,τ} dx,
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Figure 6: Estimated kernel HDRs for the conditional densities of tomorrow’s temperature given that
today’s temperature is in a fixed interval. The bandwidth for each HDR estimate is chosen using the
selector described in Section 3.1.

so that

E{µf (R̂h,τ4Rτ )} =
r∑

j=0

∫ x2j+1

x2j

f(x)P
(
f̂h(x) ≥f̂h,τ

)
dx+

r∑
j=1

∫ x2j

x2j−1

f(x)P
(
f̂h(x) < f̂h,τ

)
dx.

The main idea of the proof is that the dominant contribution to E{µf (R̂h,τ4Rτ )} comes from
a union of 2r small intervals, one near each xj , where P

(
f̂h(x) ≥ f̂h,τ

)
is close to 1/2. In

each of these intervals, we can represent f̂h(x) − f̂h,τ by a sample mean of independent and
identically distributed random variables and a small additional remainder term, and hence
apply a normal approximation to deduce the result. For clarity of exposition, we now split the
proof into several steps:

Step 1: As a preliminary step, let f̃ = f + g be another uniformly continuous density, and
let f̃τ = fτ (f̃). Writing ‖ · ‖∞ for the supremum norm on the real line, we show that there
exists C ≥ 1 such that for all ε > 0 sufficiently small, we have |f̃τ − fτ | ≤ Cε whenever ‖g‖∞ ≡
‖f̃−f‖∞ ≤ ε. To see this, letL =

∑r
j=1(x2j−x2j−1) and chooseC > 1+2L

{
1
4fτ

∑2r
j=1

1
|f ′(xj)|

}−1.
The inverse function theorem (Burkill and Burkill, 2002, Theorem 7.51) gives that for ε ∈ R with
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|ε| sufficiently small, we can write

{x : f(x) ≥ fτ + ε} =
r⋃

j=1

[x2j−1 + δε,2j−1, x2j − δε,2j ],

with δε,j = ε
|f ′(xj)| + O(ε2) as ε → 0. It follows that when ε > 0 is sufficiently small, and

‖g‖∞ ≤ ε, we have∫ ∞

−∞
f̃(x)1{f̃(x)≥fτ−Cε} dx ≥

∫ ∞

−∞
{f(x)− ε}1{f(x)≥fτ−(C−1)ε} dx

= 1− τ +
r∑

j=1

∫ x2j−1

x2j−1+δ−ε(C−1),2j−1

f(x) dx+
r∑

j=1

∫ x2j−δ−ε(C−1),2j

x2j

f(x) dx

− ε

r∑
j=1

{x2j − δ−ε(C−1),2j − (x2j−1 + δ−ε(C−1),2j−1)}

≥ 1− τ +
1
4
(C − 1)εfτ

2r∑
j=1

1
|f ′(xj)|

− 2εL > 1− τ.

Thus f̃τ ≥ fτ − Cε. A very similar argument yields the upper bound f̃τ ≤ fτ + Cε, and this
completes Step 1.

Remark: Now, for δ > 0 small enough that f has two continuous derivatives in Iδ ≡ ∪r
j=1[x2j−1−

δ, x2j + δ]., let ‖ · ‖Iδ ,∞ denote the supremum norm restricted to Iδ. It will be helpful in Step 4
to note that a small modification of the above argument may be used to prove that if ‖g‖∞ and
‖g′‖Iδ ,∞ are sufficiently small, and if

r∑
j=1

∫ x2j+δ

x2j−1−δ
|g(x)| dx = O

( 2r∑
j=1

|g(xj)|
)

as
∑2r

j=1 |g(xj)| → 0, then f̃τ − fτ = O
(∑2r

j=1 |g(xj)|
)

as
∑2r

j=1 |g(xj)| → 0.

Step 2: We show that for each fixed δ > 0,
r∑

j=0

∫ x2j+1−δ

x2j+δ
f(x)P

(
f̂h(x) ≥ f̂h,τ

)
dx+

r∑
j=1

∫ x2j−δ

x2j−1+δ
f(x)P

(
f̂h(x) < f̂h,τ

)
dx = o(n−1) (3.3)

as n → ∞. In fact, we claim (and it will be straightforward to see) that the error term is of the
stated order uniformly for h ∈ [h−, h+]. Indeed, we make a similar claim for every error term
in each expression below where the bandwidth h appears, but we do not repeat this assertion
in future occurrences. As in Step 1, observe that under (A1), if δ > 0 is sufficiently small, then
there exists ε > 0 such that f(x) ≤ fτ − ε for x ∈ ∪r

j=0[x2j + δ, x2j+1 − δ] and f(x) ≥ fτ + ε for
x ∈ ∪r

j=1[x2j−1 + δ, x2j − δ]. By reducing δ > 0 if necessary, for x ∈ ∪r
j=0[x2j + δ, x2j+1 − δ],

P
(
f̂h(x) ≥ f̂h,τ

)
≤ P

(
f̂h(x)− f(x)− (f̂h,τ − fτ ) ≥ ε

)
≤ P

(
‖f̂h − f‖∞ ≥ ε/2

)
+ P

(
|f̂h,τ − fτ | ≥ ε/2

)
≤ 2P

(
‖f̂h − f‖∞ ≥ ε

2C

)
, (3.4)

where we have used the result of Step 1 in the last inequality, and C is the constant defined
in that step. A very similar argument yields the same upper bound for P

(
f̂h(x) < f̂h,τ

)
when

x ∈ ∪r
j=1[x2j−1 + δ, x2j − δ]. Now, since f is uniformly continuous under (A1),

‖E(f̂h)− f‖∞ = sup
x∈R

∣∣∣∣∫ ∞

−∞
K(z){f(x− hz)− f(x)} dz

∣∣∣∣ → 0 (3.5)
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as n→∞. The inequality (3.4), together with the observation (3.5) on the bias of f̂h, yields that
for n sufficiently large,

r∑
j=0

∫ x2j+1−δ

x2j+δ
f(x)P

(
f̂h(x) ≥ f̂h,τ

)
dx+

r∑
j=1

∫ x2j−δ

x2j−1+δ
f(x)P

(
f̂h(x) < f̂h,τ

)
dx

≤ 2P
(
‖f̂h − E(f̂h)‖∞ ≥ ε

4C

)
≤ exp(−c1nhε2),

for some c1 > 0. Here, the final inequality is an application of Corollary 2.2 of Giné and Guillou
(2002) (a consequence of Talagrand’s inequality) to the Vapnik–Cervonenkis class of functions
{K((x − ·)/h) : x ∈ R, h > 0} (cf. Dudley (1999), Theorems 4.2.1 and 4.2.4). Equation (3.3)
follows immediately, and this completes the proof of Step 2.

Step 3: We show that (3.3) continues to hold if δ is replaced by a sequence (δn) converging to
zero, provided that δn → 0 slowly enough that n1/4δn → ∞ and (h+)2 = o(δn). In order to
complete the proof of Step 3, it suffices to show that there exists δ > 0 such that

E(δ, δn) ≡
r∑

j=1

∫ x2j−1−δn

x2j−1−δ
P(f̂h(x) ≥ f̂h,τ

)
dx+

r∑
j=1

∫ x2j−1+δ

x2j−1+δn

P(f̂h(x) < f̂h,τ

)
dx

r∑
j=1

∫ x2j−δn

x2j−δ
P(f̂h(x) < f̂h,τ

)
dx+

r∑
j=1

∫ x2j+δ

x2j+δn

P(f̂h(x) ≥ f̂h,τ

)
dx = o(n−1).

We may assume δ > 0 is small enough that f has two continuous derivatives in Iδ. This enables
a straightforward modification to the argument in (3.5) using a Taylor expansion, leading to

‖E(f̂h)− f‖Iδ ,∞ = O(h2). (3.6)

Now there exists a constant c2 > 0 small enough that if we take εn = c2δn, then we have
|f(x) − fτ | ≥ εn when minj |x − xj | ≥ δn. Moreover, (h+)2 = o(εn), so that for n sufficiently
large, the same argument as in Step 2 yields

E(δ, δn) ≤ 2P
(
‖f̂h − E(f̂h)‖∞ ≥ εn

4C

)
≤ exp(−c1nhε2n) = o(n−1).

This completes the proof of Step 3.

Step 4: We seek asymptotic expansions for E(f̂h,τ ) and Var(f̂h,τ ). To this end, for uniformly
continuous densities f̃ = f + g that are twice continuously differentiable in Iδ, and for y ∈
(0,∞), we define

ψ(f̃ , y) =
∫ ∞

−∞
f̃(x)1{f̃(x)≥y} dx.

The reason for making this definition is that by examining the behaviour of ψ under small
changes of its arguments from (f, fτ ), we will be able to study the difference f̂h,τ − fτ in (3.10)
below. First, for ε > 0 sufficiently small,∣∣∣∣ψ(f, fτ + ε)− ψ(f, fτ ) + εfτ

2r∑
j=1

1
|f ′(xj)|

∣∣∣∣
=

∣∣∣∣−∫ ∞

−∞
f(x)1{fτ≤f(x)<fτ+ε} dx+ εfτ

2r∑
j=1

1
|f ′(xj)|

∣∣∣∣
=

∣∣∣∣− r∑
j=1

{∫ x2j−1+δε,2j−1

x2j−1

f(x) dx+
∫ x2j

x2j−δε,2j

f(x) dx
}

+ εfτ

2r∑
j=1

1
|f ′(xj)|

∣∣∣∣
= O(ε2) (3.7)
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as ε↘ 0. A very similar argument shows that the error term is of the same order as ε↗ 0.

Observe that when ‖g‖∞ and ‖g′‖Iδ ,∞ are sufficiently small, f̃ has a non-zero derivative in a
neighbourhood of each xj . It follows that for sufficiently small values of ‖g‖∞ + ‖g′‖Iδ ,∞, we
can write

{x : f̃(x) ≥ f̃τ} =
r⋃

j=1

[x2j−1 + δε,2j−1 + η2j−1 , x2j − δε,2j − η2j ],

where ε = f̃τ − fτ . Moreover, provided that
∑r

j=1

∫ x2j+δ
x2j−1−δ |g(x)| dx = O

(∑2r
j=1 |g(xj)|

)
and∑2r

j=1 |g(xj)| = O(minj |g(xj)|) as
∑2r

j=1 |g(xj)| + ‖g′‖Iδ ,∞ → 0, we have that ηj = −g(xj)
|f ′(xj)| +

O(|g(xj)|‖g′‖Iδ ,∞) as
∑2r

j=1 |g(xj)|+ ‖g′‖Iδ ,∞ → 0. Thus we can write

∣∣∣∣ψ(f̃ , f̃τ )− ψ(f, f̃τ )− fτ

2r∑
j=1

g(xj)
|f ′(xj)|

−
r∑

j=1

∫ x2j

x2j−1

g(x) dx
∣∣∣∣

≤
∣∣∣∣∫ ∞

−∞
f(x)(1{f̃(x)≥f̃τ} − 1{f(x)≥f̃τ}) dx− fτ

2r∑
j=1

g(xj)
|f ′(xj)|

∣∣∣∣
+

∣∣∣∣∫ ∞

−∞
g(x)(1{f̃(x)≥f̃τ} − 1{f(x)≥fτ}) dx

∣∣∣∣
=

∣∣∣∣{fτ +O
( 2r∑

j=1

|g(xj)|
)} 2r∑

j=1

{
g(xj)
|f ′(xj)|

+O(|g(xj)|‖g′‖Iδ ,∞)
}
− fτ

2r∑
j=1

g(xj)
|f ′(xj)|

∣∣∣∣
+O

{( 2r∑
j=1

|g(xj)|
)2}

= O

{( 2r∑
j=1

|g(xj)|
)2

+ ‖g′‖Iδ ,∞

2r∑
j=1

|g(xj)|
}

(3.8)

as
∑2r

j=1 |g(xj)| + ‖g′‖Iδ ,∞ → 0. Assuming that ψ
(
f̃ , f̃τ ) = 1 − τ and that the above conditions

on g hold, we have from (3.7) and (3.8) that

0 = ψ
(
f̃ , f̃τ

)
− ψ(f, fτ )

= ψ
(
f̃ , f̃τ

)
− ψ

(
f, f̃τ

)
+ ψ

(
f, f̃τ

)
− ψ(f, fτ )

= −{f̃τ − fτ}fτ

2r∑
j=1

1
|f ′(xj)|

+ fτ

2r∑
j=1

g(xj)
|f ′(xj)|

+
r∑

j=1

∫ x2j

x2j−1

g(x) dx

+O

{( 2r∑
j=1

|g(xj)|
)2

+ ‖g′‖Iδ ,∞

2r∑
j=1

|g(xj)|
}

(3.9)

as
∑2r

j=1 |g(xj)|+ ‖g′‖Iδ ,∞ → 0.

We want to apply (3.9) with f̃ = f̂h, so that g = f̂h − f . In order to do this, we must recall

observation (3.5) on the bias of f̂h, and the fact that ‖f̂h − E(f̂h)‖∞ = Oa.s.

(√log 1/h

(nh)1/2

)
from an

application of Corollary 2.2 of Giné and Guillou (2002). It follows that ‖f̂h−f‖∞
a.s.→ 0. Similarly,

‖E(f̂ ′h)− f ′‖Iδ ,∞ = O(h2), and a further application of Corollary 2.2 of Giné and Guillou (2002)

gives ‖f̂ ′h − E(f̂ ′h)‖Iδ ,∞ = Oa.s.

(√log 1/h

(nh3)1/2

)
. Thus ‖f̂ ′h − f ′‖Iδ ,∞

a.s.→ 0. This in turn implies that

with probability one, for n sufficiently large, f̂h,τ is the unique solution to ψ(f̂h, f̂h,τ ) = 1 − τ ,
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or equivalently
∫
f̂h(x)1{f̂h(x)≥f̂h,τ} dx = 1− τ , as claimed in Section 2. It remains to note that∑r

j=1

∫ x2j+δ
x2j−1−δ |f̂h(x)− f(x)| dx∑2r
j=1 |f̂h(xj)− f(xj)|

= Op(1) and

∑2r
j=1 |f̂h(xj)− f(xj)|

minj |f̂h(xj)− f(xj)|
= Op(1).

It follows that we can now substitute g = f̂h − f in (3.9) to deduce that

f̂h,τ − fτ =
{ 2r∑

j=1

1
|f ′(xj)|

}−1{ 2r∑
j=1

f̂h(xj)− f(xj)
|f ′(xj)|

+
1
fτ

r∑
j=1

∫ x2j

x2j−1

f̂h(x)− f(x) dx
}

+Op

(√
log(1/h)
nh2

+
h1/2

√
log(1/h)
n1/2

+ h4
)
. (3.10)

Equation (3.10) shows that we can write the difference f̂h,τ − fτ as a sample mean of inde-
pendent and identically distributed random variables and a small additional remainder term.

Notice from the bandwidth condition on h− in (A2) that
√

log(1/h)

nh2 = o(h2). Next, observe that

2r∑
j=1

E{f̂h(xj)} − f(xj)
|f ′(xj)|

+
1
fτ

r∑
j=1

∫ x2j

x2j−1

E{f̂h(x)} − f(x) dx = D1

2r∑
j=1

1
|f ′(xj)|

h2 + o(h2),

where D1 is given in (2.1). Thus, in order to prove that

E(f̂h,τ ) = fτ +D1h
2 + o(h2), (3.11)

it suffices by (3.9) and Step 1 to show that for any η > 0,

E(|f̂h,τ − fτ −D1h
2|1{P2r

j=1 |f̂h(xj)−f(xj)|+‖f̂ ′h−f ′‖Iδ,∞>η}) = o(h2).

But this follows by Cauchy–Schwarz, because Step 1 may be used to show that E(f̂2
h,τ ) = O(1),

and also

P
( 2r∑

j=1

|f̂h(xj)− f(xj)| > η/2
)

+ P
(
‖f̂ ′h − f ′‖Iδ ,∞ > η/2

)
= o(n−1).

We therefore deduce (3.11).

In a very similar way, we can also use (3.9) and the fact that
2r∑

j=1

Var{f̂h(xj)}
f ′(xj)2

=
D2

nh

{ 2r∑
j=1

1
|f ′(xj)|

}2

+ o
( 1
nh

)
,

where D2 is given in (2.1), to deduce that

Var(f̂h,τ ) =
D2

nh
+ o

( 1
nh

)
. (3.12)

Step 5: We can use the results of Step 4 to shrink the region of interest still further. From the
result of Step 3 we can write

E{µf (R̂h,τ4Rτ )} =
r∑

j=1

∫ x2j−1+δn

x2j−1−δn

f(x)
∣∣P(

f̂h(x) < f̂h,τ

)
− 1{x<x2j−1}

∣∣ dx
+

r∑
j=1

∫ x2j+δn

x2j−δn

f(x)
∣∣P(

f̂h(x) < f̂h,τ

)
− 1{x≥x2j}

∣∣ dx+ o(n−1)

=
fτ

(nh)1/2

r∑
j=1

∫ (nh)1/2δn

−(nh)1/2δn

|P
(
f̂h(x2j−1 + (nh)−1/2t) < f̂h,τ

)
− 1{t<0}|

+
∣∣P(

f̂h(x2j + (nh)−1/2t) < f̂h,τ

)
− 1{t≥0}

∣∣ dt+ o(n−1). (3.13)
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For brevity, we write xt
j = xj + (nh)−1/2t. Now, for each j = 1, . . . , 2r, we see that for n

sufficiently large, E{f̂h(xt
j)− f̂h,τ} is a strictly monotone function of t ∈ [−(nh)1/2δn, (nh)1/2δn],

with a unique zero t∗j , say. Moreover,

t∗j =
{
D1 −

1
2
µ2(K)f ′′(xj)

}
{f ′(xj)}−1n1/2h5/2{1 + o(1)}.

Fix a sequence (tn) diverging to infinity and let In
j = [−(nh)1/2δn, (nh)1/2δn] \ [t∗j − tn, t

∗
j + tn].

We claim that
r∑

j=1

{∫
In
2j−1

|P
(
f̂h(xt

2j−1) < f̂h,τ

)
− 1{t<0}| dt+

∫
In
2j

∣∣P(
f̂h(xt

2j) < f̂h,τ

)
− 1{t≥0}

∣∣ dt} → 0 (3.14)

as n→∞. Now there exists c3 > 0 such that for all t ∈ ∪2r
j=1I

n
j and n sufficiently large, we have

|E{f̂h(xt
j)− f̂h,τ}| ≥ c3(nh)−1/2tn. Thus there exists c4 > 0 such that for all n sufficiently large,

|P
(
f̂h(xt

2j−1) < f̂h,τ

)
− 1{t<0}|

≤ P
(∣∣∣∣ f̂h(xt

2j−1)− E{f̂h(xt
2j−1)}

Var1/2{f̂h(xt
2j−1)}

∣∣∣∣ ≥ c4tn

)
+ P

(∣∣∣∣ f̂h,τ − E(f̂h,τ )

Var1/2(f̂h,τ )

∣∣∣∣ ≥ c4tn

)
→ 0,

uniformly for t ∈ ∪r
j=1I

n
2j−1. Since also

∣∣P(
f̂h(xt

2j) < f̂h,τ

)
− 1{t≥0}

∣∣ → 0 uniformly for t ∈
∪r

j=1I
n
2j , we deduce (3.14).

Step 6: We also require an asymptotic expansion for Cov(f̂h(xt
j), f̂h,τ ), for t ∈ [t∗j − tn, t

∗
j + tn].

In fact, provided (tn) diverges sufficiently slowly, we have

Cov(f̂h(xt
j), f̂h,τ ) =

D3,j

nh
+ o

( 1
nh

)
,

uniformly for t ∈ [t∗j − tn, t
∗
j + tn], where D3,j is given at (2.1). This follows from the expan-

sion (3.9) and the fact that provided (tn) diverges sufficiently slowly,

E
{

1
h2
K

(xj −X1

h

)
K

(xt
j −X1

h

)}
=

1
h

∫ ∞

−∞
K(z)K

((nh)−1/2t+ hz

h

)
f(xj − hz) dz

=
1
h
fτR(K) + o(h−1),

uniformly for t ∈ [t∗j − tn, t
∗
j + tn].

Step 7: To complete the proof of Theorem 1, it suffices by (3.13) and (3.14) to show that there
exists a sequence (tn) diverging to infinity such that

fτ

(nh)1/2

r∑
j=1

{ ∫ t∗2j−1+tn

t∗2j−1−tn

|P
(
f̂h(xt

2j−1) < f̂h,τ

)
− 1{t<0}| dt+

∫ t∗2j+tn

t∗2j−tn

∣∣P(
f̂h(xt

2j) < f̂h,τ

)
− 1{t≥0}

∣∣ dt}

=
2r∑

j=1

[
B1,jφ(B2,jn

1/2h5/2)
(nh)1/2

+B3,jh
2{2Φ(B2,jn

1/2h5/2)− 1}
]

+ o
( 1

(nh)1/2
+ h2

)
.

For i = 1, . . . , n, let Zni(x) = h−1K
(

x−Xi
h

)
and let Ȳn = n−1

∑n
i=1 Yni, where

Yni = Zni(xt
j)− fτ −

{ 2r∑
k=1

1
|f ′(xk)|

}−1[ 2r∑
k=1

Zni(xk)− f(xk)
|f ′(xk)|

+
1
fτ

r∑
k=1

∫ x2k

x2k−1

Zni(x)− f(x) dx
]
.

By (3.9) and (3.10), we can write f̂h(xt
j) − f̂h,τ = Ȳn + Rn, where Rn − E(Rn) = op{(nh)−1/2}.

Since Var(Ȳn) = O{(nh)−1} uniformly for t ∈ [t∗j − tn, t
∗
j + tn], we choose (tn) to diverge to

infinity so slowly that
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• P
(
|Rn−E(Rn)|
Var1/2(Ȳn)

> 1
t2n

)
≤ 1

t2n
, uniformly for t ∈ [t∗j − tn, t

∗
j + tn]

• (nh)Var(Ȳn) = R(K)fτ − 2D3,j +D2 + o(t−1
n ), uniformly for t ∈ [t∗j − tn, t

∗
j + tn]

• E(Ȳn + Rn) = {(nh)−1/2tf ′(xj) + D4h
2}{1 + o(t−1

n )}, uniformly for t ∈ [t∗j − tn, t
∗
j + tn],

where D4 = 1
2µ2(K)f ′′(xj)−D1

• tn = o(n1/6).

Then

P
(
f̂h(xt

j) < f̂h,τ

)
− Φ

(
−tf ′(xj)−D4n

1/2h5/2

{R(K)fτ − 2D3,j +D2}1/2

)
≤ P

(
|Rn − E(Rn)|
Var1/2(Ȳn)

>
1
t2n

)
+ P

(
Ȳn − E(Ȳn)
Var1/2(Ȳn)

≤ −E(Ȳn +Rn)
Var1/2(Ȳn)

+
1
t2n

)
− Φ

(
−tf ′(xj)−D4n

1/2h5/2

{R(K)fτ − 2D3,j +D2}1/2

)
= O

( 1
t2n

+
1

(nh)1/2

)
+ Φ

(
−E(Ȳn +Rn)
Var1/2(Ȳn)

)
− Φ

(
−tf ′(xj)−D4n

1/2h5/2

{R(K)fτ − 2D3,j +D2}1/2

)
= o(t−1

n ),

uniformly for t ∈ [t∗j − tn, t
∗
j + tn]. Here we have used the Berry–Esseen inequality to reach the

penultimate line. A very similar argument yields a lower bound of the same order. The proof
of Step 7, and hence the proof of Theorem 1, is now completed by the observation that

fτ

(nh)1/2

r∑
j=1

{∫ ∞

−∞

∣∣∣∣Φ(
−tf ′(x2j−1)−D4n

1/2h5/2

{R(K)fτ − 2D3,j +D2}1/2

)
− 1{t<0}

∣∣∣∣
+

∣∣∣∣Φ(
−tf ′(x2j)−D4n

1/2h5/2

{R(K)fτ − 2D3,j +D2}1/2

)
− 1{t≥0}

∣∣∣∣ dt}
=

2r∑
j=1

[
B1,jφ(B2,jn

1/2h5/2)
(nh)1/2

+B3,jh
2{2Φ(B2,jn

1/2h5/2)− 1}
]
.

�

Proof of Corollary 2

We know that for any sequence of bandwidths minimising the risk, nh5 is bounded away from
zero and infinity, so we may restrict attention to this case. The important point to note is that
under the hypotheses of the corollary, B1,j , B2,j and B3,j do not depend on j, so we write them
as B1, B2 and B3 respectively.

By making the substitution x = B2n
1/2h5/2, there exist positive constants a = 2B1B

1/5
2 and

b = B3/(B1B2) such that limn→∞ n2/5E{µf (R̂h,τ4Rτ )} = au(x), where u(x) = x−1/5φ(x) +
bx4/5{2Φ(x) − 1}. Since u is continuous with u(x) → ∞ as x ↘ 0 and x → ∞, it attains its
minimum in (0,∞). To show this minimum is unique, it suffices to show that v(x) has a unique
zero in (0,∞), where

v(x) =
5x6/5

φ(x)
u′(x) = −1 +

4bx{2Φ(x)− 1}
φ(x)

+ 5(2b− 1)x2.
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Now we have

v′(x) = 2(14b− 5)x+
4b(1 + x2){2Φ(x)− 1}

φ(x)

v′′(x) = 2(18b− 5) + 8bx2 +
4b(3x+ x3){2Φ(x)− 1}

φ(x)
.

There are therefore two cases to consider: if b ≥ 5/18, then v is strictly convex, so since v(0+) =
−1 and v(x) → ∞ as x → ∞, we see that v has a unique zero in (0,∞). On the other hand, if
b < 5/18, then there exists x∗ ∈ (0,∞) such that v′′(x) < 0 for x ∈ (0, x∗) and v′′(x) > 0 for
x ∈ (x∗,∞). But if b < 5/18 then v′(x) < 0, for sufficiently small x > 0, so from v(0+) = −1, it
again follows that v has a unique zero.

Write xmin for the unique minimum of u in (0,∞), and let copt = (xmin/B2)2/5. We conclude
that any optimal bandwidth sequence (hopt), in the sense of minimising E{µf (R̂h,τ4Rτ )}, must
satisfy hopt = coptn

−1/5{1 + o(1)} as n→∞. �

Proof of Theorem 3

We require a bound on |x̂j,h0 − xj | for j = 1, . . . , 2r. To this end, let f̃ = f + g be another
density satisfying the same conditions as f . From Step 4 of the proof of Theorem 1, we see
that for sufficiently small values of ‖g‖∞ + ‖g′‖Iδ ,∞, there exist precisely 2r values x̃1 < . . . <

x̃2r such that f̃(x̃j) = f̃τ . Moreover, provided
∑r

j=1

∫ x2j+δ
x2j−1−δ |g(x)| dx = O

(∑2r
j=1 |g(xj)|

)
as∑2r

j=1 |g(xj)| + ‖g′‖Iδ ,∞ → 0, we have x̃j − xj = O(|g(xj)|) as
∑2r

j=1 |g(xj)| + ‖g′‖Iδ ,∞ → 0.
Substituting f̃ = f̂h0 , so that g = f̂h0 − f and x̃j = x̂j,h0 , we have |x̂j,h0 − xj | = Op(n−2/5).

It follows that D̂1 = D1 +Op(n−2/9), the crucial fact being that f̂ ′′h2
(x̂j,h0)− f ′′(xj) = Op(n−2/9).

Similarly, D̂2 = D2 + Op(n−2/7) and D̂3,j = D3,j + Op(n−2/7) for j = 1, . . . , 2r. Thus B̂1,j =
B1,j + Op(n−2/7), B̂2,j = B2,j + Op(n−2/9) and B̂3,j = B3,j + Op(n−2/9). We deduce that for
any 0 < c1 < c2 < ∞, we have ÂRn(c) = AR(c)

{
1 + Op(n−2/9)

}
, uniformly for c ∈ [c1, c2],

and a standard Taylor expansion argument then gives that ĉopt = copt

{
1 + Op(n−2/9)

}
. Both

conclusions of the theorem follow immediately. �

Proof of Theorem 4

Let zn = δ/h2, where δ is small enough that f has 12 continuous derivatives in ∪2r
j=1[xj− δ, xj +

δ]. Under the conditions of the theorem, we may integrate by parts twice and apply a Taylor
expansion to obtain

|E{f̂ ′′h2
(xj)} − f ′′(xj)| =

∣∣∣∣∫ zn

−zn

K2(z){f ′′(xj − h2z)− f ′′(xj)} dz
∣∣∣∣ + o(h10

2 ) = O(h10
2 ).

This expression for the bias can be combined with the standard fact that Varf̂ ′′h2
(xj) = O{(nh5

2)
−1}

and the bound on |x̂j,h0 − xj | from the proof of Theorem 3 to yield f̂ ′′h2
(x̂j,h0) − f ′′(xj) =

Op(n−2/5). Similar computations give f̂ ′h1
(x̂j,h0) − f ′(xj) = Op(n−2/5). The rest of the proof

mirrors the proof of Theorem 3. �
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