6 research outputs found

    Supporting Data For Thesis Titled "Development and Application of Grand Canonical Methods for Molecular Dynamics Simulations"

    No full text
    This dataset contains input files and scripts for simulation and analysis, as would be needed to reproduce the results presented in the thesis titled &quot;Development and Application of Grand Canonical Methods for Molecular Dynamics Simulations&quot;, by Marley Samways. Some of these data are already referenced in the following publications: - M. L. Samways, H. E. Bruce Macdonald and J. W. Essex, J. Chem. Inf. Model., 2020, 60, 4436-4441 - M. L. Samways, R. D. Taylor, H. E. Bruce Macdonald and J. W. Essex, Chem. Soc. Rev., 2021, 50, 9104-9120 - J. L. Thomaston, M. L. Samways, A. Konstantinidi, C. Ma, Y. Hu, H. E. Bruce Macdonald, J. Wang, J. W. Essex, W. F. DeGrado and A. Kolocouris, Biochemistry, 2021, 60, 2471-2482</span

    grand: a Python module for grand canonical water sampling in OpenMM

    No full text
    Networks of water molecules can play a critical role at the protein–ligand interface and can directly influence drug–target interactions. Grand canonical methods aid in the sampling of these water molecules, where conventional molecular dynamics equilibration times are often long, by allowing waters to be inserted and deleted from the system, according to the chemical potential. Here, we present our open source Python module, grand (https://github.com/essex-lab/grand), which allows molecular dynamics simulations to be performed in conjunction with grand canonical Monte Carlo sampling, using the OpenMM simulation engine. We demonstrate the accuracy of this module by reproducing the density of bulk water observed from constant pressure simulations. Application of this code to the bovine pancreatic trypsin inhibitor protein reproduces three buried crystallographic water sites that are poorly sampled using conventional molecular dynamics

    Water molecules at protein-drug interfaces: computational prediction and analysis methods

    No full text
    The fundamental importance of water molecules at drug-protein interfaces is now widely recognised and a significant feature in structure-based drug design. Experimental methods for analysing the role of water in drug binding have many challenges, including the accurate location of bound water molecules in crystal structures, and problems in resolving specific water contributions to binding thermodynamics. Computational analyses of binding site water molecules provide an alternative, and in principle complete, structural and thermodynamic picture, and their use is now commonplace in the pharmaceutical industry. In this review, we describe the computational methodologies that are available and discuss their strengths and weaknesses. Additionally, we provide a critical analysis of the experimental data used to validate the methods, regarding the type and quality of experimental structural data. We also discuss some of the fundamental difficulties of each method and suggest directions for future study.</p

    Comparison of grand canonical and conventional molecular dynamics simulation methods for protein-bound water networks

    No full text
    Water molecules play important roles in all biochemical processes. Therefore, it is of key importance to obtain information of the structure, dynamics, and thermodynamics of water molecules around proteins. Numerous computational methods have been suggested with this aim. In this study, we compare the performance of conventional and grand-canonical Monte Carlo (GCMC) molecular dynamics (MD) simulations to sample the water structure, as well GCMC and grid-based inhomogeneous solvation theory (GIST) to describe the energetics of the water network. They are evaluated on two proteins: the buried ligand-binding site of a ferritin dimer and the solvent-exposed binding site of galectin-3. We show that GCMC/MD simulations significantly speed up the sampling and equilibration of water molecules in the buried binding site, thereby making the results more similar for simulations started from different states. Both GCMC/MD and conventional MD reproduce crystal-water molecules reasonably for the buried binding site. GIST analyses are normally based on restrained MD simulations. This improves the precision of the calculated energies, but the restraints also significantly affect both absolute and relative energies. Solvation free energies for individual water molecules calculated with and without restraints show a good correlation, but with large quantitative differences. Finally, we note that the solvation free energies calculated with GIST are ∼5 times larger than those estimated by GCMC owing to differences in the reference state

    Enhancing sampling of water rehydration on ligand binding: a comparison of techniques

    No full text
    Water often plays a key role in protein structure, molecular recognition, and mediating protein–ligand interactions. Thus, free energy calculations must adequately sample water motions, which often proves challenging in typical MD simulation time scales. Thus, the accuracy of methods relying on MD simulations ends up limited by slow water sampling. Particularly, as a ligand is removed or modified, bulk water may not have time to fill or rearrange in the binding site. In this work, we focus on several molecular dynamics (MD) simulation-based methods attempting to help rehydrate buried water sites: BLUES, using nonequilibrium candidate Monte Carlo (NCMC); grand, using grand canonical Monte Carlo (GCMC); and normal MD. We assess the accuracy and efficiency of these methods in rehydrating target water sites. We selected a range of systems with varying numbers of waters in the binding site, as well as those where water occupancy is coupled to the identity or binding mode of the ligand. We analyzed the rehydration of buried water sites in binding pockets using both clustering of trajectories and direct analysis of electron density maps. Our results suggest both BLUES and grand enhance water sampling relative to normal MD and grand is more robust than BLUES, but also that water sampling remains a major challenge for all of the methods tested. The lessons we learned for these methods and systems are discussed

    Rimantadine binds to and inhibits the influenza A M2 proton channel without enantiomeric specificity

    No full text
    The influenza A M2 wild-type (WT) proton channel is the target of the anti-influenza drug rimantadine. Rimantadine has two enantiomers, though most investigations into drug binding and inhibition have used a racemic mixture. Solid-state NMR experiments using the full length-M2 WT have shown significant spectral differences that were interpreted to indicate tighter binding for (R)- vs (S)-rimantadine. However, it was unclear if this correlates with a functional difference in drug binding and inhibition. Using X-ray crystallography, we have determined that both (R)- and (S)-rimantadine bind to the M2 WT pore with slight differences in the hydration of each enantiomer. However, this does not result in a difference in potency or binding kinetics, as shown by similar values for kon, koff, and Kd in electrophysiological assays and for EC50 values in cellular assays. We concluded that the slight differences in hydration for the (R)- and (S)-rimantadine enantiomers are not relevant to drug binding or channel inhibition. To further explore the effect of the hydration of the M2 pore on binding affinity, the water structure was evaluated by grand canonical ensemble molecular dynamics simulations as a function of the chemical potential of the water. Initially, the two layers of ordered water molecules between the bound drug and the channel’s gating His37 residues mask the drug’s chirality. As the chemical potential becomes more unfavorable, the drug translocates down to the lower water layer, and the interaction becomes more sensitive to chirality. These studies suggest the feasibility of displacing the upper water layer and specifically recognizing the lower water layers in novel drugs
    corecore