3 research outputs found

    Life course longitudinal growth and risk of knee osteoarthritis at age 53 years: evidence from the 1946 British birth cohort study

    Get PDF
    Objective: To examine the relationship between height gain across childhood and adolescence with knee osteoarthritis in the MRC National Survey of Health and Development (NSHD). / Materials and methods: Data are from 3035 male and female participants of the NSHD. Height was measured at ages 2, 4, 6, 7, 11 and 15 years, and self-reported at ages 20 years. Associations between (1) height at each age (2) height gain during specific life periods (3) Super-Imposition by Translation And Rotation (SITAR) growth curve variables of height size, tempo and velocity, and knee osteoarthritis at 53 years were tested. / Results: In sex-adjusted models, estimated associations between taller height and decreased odds of knee osteoarthritis at age 53 years were small at all ages - the largest associations were an OR of knee osteoarthritis of 0.9 per 5 cm increase in height at age 4, (95% CI 0.7–1.1) and an OR of 0.9 per 5 cm increase in height, (95% CI 0.8–1.0) at age 6. No associations were found between height gain during specific life periods or the SITAR growth curve variables and odds of knee osteoarthritis. / Conclusions: There was limited evidence to suggest that taller height in childhood is associated with decreased odds of knee osteoarthritis at age 53 years in this cohort. This work enhances our understanding of osteoarthritis predisposition and the contribution of life course height to this

    Ciliary IFT88 protects coordinated adolescent growth plate ossification from disruptive physiological mechanical forces

    No full text
    Compared with our understanding of endochondral ossification, much less is known about the coordinated arrest of growth defined by the narrowing and fusion of the cartilaginous growth plate. Throughout the musculoskeletal system, appropriate cell and tissue responses to mechanical force delineate morphogenesis and ensure lifelong health. It remains unclear how mechanical cues are integrated into many biological programs, including those coordinating the ossification of the adolescent growth plate at the cessation of growth. Primary cilia are microtubule-based organelles tuning a range of cell activities, including signaling cascades activated or modulated by extracellular biophysical cues. Cilia have been proposed to directly facilitate cell mechanotransduction. To explore the influence of primary cilia in the mouse adolescent limb, we conditionally targeted the ciliary gene Intraflagellar transport protein 88 (Ift88fl/fl) in the juvenile and adolescent skeleton using a cartilage-specific, inducible Cre (AggrecanCreERT2 Ift88fl/fl). Deletion of IFT88 in cartilage, which reduced ciliation in the growth plate, disrupted chondrocyte differentiation, cartilage resorption, and mineralization. These effects were largely restricted to peripheral tibial regions beneath the load-bearing compartments of the knee. These regions were typified by an enlarged population of hypertrophic chondrocytes. Although normal patterns of hedgehog signaling were maintained, targeting IFT88 inhibited hypertrophic chondrocyte VEGF expression and downstream vascular recruitment, osteoclastic activity, and the replacement of cartilage with bone. In control mice, increases to physiological loading also impair ossification in the peripheral growth plate, mimicking the effects of IFT88 deletion. Limb immobilization inhibited changes to VEGF expression and epiphyseal morphology in Ift88cKO mice, indicating the effects of depletion of IFT88 in the adolescent growth plate are mechano-dependent. We propose that during this pivotal phase in adolescent skeletal maturation, ciliary IFT88 protects uniform, coordinated ossification of the growth plate from an otherwise disruptive heterogeneity of physiological mechanical forces
    corecore