2,119 research outputs found
Full counting statistics for voltage and dephasing probes
We present a stochastic path integral method to calculate the full counting
statistics of conductors with energy conserving dephasing probes and
dissipative voltage probes. The approach is explained for the experimentally
important case of a Mach-Zehnder interferometer, but is easily generalized to
more complicated setups. For all geometries where dephasing may be modeled by a
single one-channel dephasing probe we prove that our method yields the same
full counting statistics as phase averaging of the cumulant generating
function.Comment: 4 pages, 2 figure
Entanglement in Anderson Nanoclusters
We investigate the two-particle spin entanglement in magnetic nanoclusters
described by the periodic Anderson model. An entanglement phase diagram is
obtained, providing a novel perspective on a central property of magnetic
nanoclusters, namely the temperature dependent competition between local Kondo
screening and nonlocal Ruderman-Kittel-Kasuya-Yoshida spin ordering. We find
that multiparticle entangled states are present for finite magnetic field as
well as in the mixed valence regime and away from half filling. Our results
emphasize the role of charge fluctuations.Comment: 5 pages, 3 figure
Noise and Full Counting Statistics of Incoherent Multiple Andreev Reflection
We present a general theory for the full counting statistics of multiple
Andreev reflections in incoherent superconducting-normal-superconducting
contacts. The theory, based on a stochastic path integral approach, is applied
to a superconductor-double barrier system. It is found that all cumulants of
the current show a pronounced subharmonic gap structure at voltages
. For low voltages , the counting statistics
results from diffusion of multiple charges in energy space, giving the th
cumulant , diverging for . We show that this
low-voltage result holds for a large class of incoherent
superconducting-normal-superconducting contacts.Comment: 4 pages, 4 figure
Orbital entanglement and violation of Bell inequalities in mesoscopic conductors
We propose a spin-independent scheme to generate and detect two-particle
entanglement in a mesoscopic normal-superconductor system. A superconductor,
weakly coupled to the normal conductor, generates an orbitally entangled state
by injecting pairs of electrons into different leads of the normal conductor.
The entanglement is detected via violation of a Bell inequality, formulated in
terms of zero-frequency current cross-correlators. It is shown that the Bell
inequality can be violated for arbitrary strong dephasing in the normal
conductor.Comment: 4 pages, 2 figure
Elastic Stars in General Relativity: II. Radial perturbations
We study radial perturbations of general relativistic stars with elastic
matter sources. We find that these perturbations are governed by a second order
differential equation which, along with the boundary conditions, defines a
Sturm-Liouville type problem that determines the eigenfrequencies. Although
some complications arise compared to the perfect fluid case, leading us to
consider a generalisation of the standard form of the Sturm-Liouville equation,
the main results of Sturm-Liouville theory remain unaltered. As an important
consequence we conclude that the mass-radius curve for a one-parameter sequence
of regular equilibrium models belonging to some particular equation of state
can be used in the same well-known way as in the perfect fluid case, at least
if the energy density and the tangential pressure of the background solutions
are continuous. In particular we find that the fundamental mode frequency has a
zero for the maximum mass stars of the models with solid crusts considered in
Paper I of this series.Comment: 22 pages, no figures, final version accepted for publication in
Class. Quantum Grav. The treatment of the junction conditions has been
improve
Quantum pump driven fermionic Mach-Zehnder interferometer
We have investigated the characteristics of the currents in a pump-driven
fermionic Mach-Zehnder interferometer. The system is implemented in a conductor
in the quantum Hall regime, with the two interferometer arms enclosing an
Aharonov-Bohm flux . Two quantum point contacts with transparency
modulated periodically in time drive the current and act as beam-splitters. The
current has a flux dependent part as well as a flux independent
part . Both current parts show oscillations as a function of frequency
on the two scales determined by the lengths of the interferometer arms. In the
non-adiabatic, high frequency regime oscillates with a constant
amplitude while the amplitude of the oscillations of increases
linearly with frequency. The flux independent part is insensitive to
temperature while the flux dependent part is exponentially
suppressed with increasing temperature. We also find that for low amplitude,
adiabatic pumping rectification effects are absent for semitransparent
beam-splitters. Inelastic dephasing is introduced by coupling one of the
interferometer arms to a voltage probe. For a long charge relaxation time of
the voltage probe, giving a constant probe potential, and the part
of flowing in the arm connected to the probe are suppressed with
increased coupling to the probe. For a short relaxation time, with the
potential of the probe adjusting instantaneously to give zero time dependent
current at the probe, only is suppressed by the coupling to the
probe.Comment: 10 pages, 4 figure
Electrical current noise of a beam splitter as a test of spin-entanglement
We investigate the spin entanglement in the superconductor-quantum dot system
proposed by Recher, Sukhorukov and Loss, coupling it to an electronic
beam-splitter. The superconductor-quantum dot entangler and the beam-splitter
are treated within a unified framework and the entanglement is detected via
current correlations. The state emitted by the entangler is found to be a
linear superposition of non-local spin-singlets at different energies, a
spin-entangled two-particle wavepacket. Colliding the two electrons in the
beam-splitter, the singlet spin-state gives rise to a bunching behavior,
detectable via the current correlators. The amount of bunching depends on the
relative positions of the single particle levels in the quantum dots and the
scattering amplitudes of the beam-splitter. The singlet spin entanglement,
insensitive to orbital dephasing but suppressed by spin dephasing, is
conveniently quantified via the Fano factors. It is found that the
entanglement-dependent contribution to the Fano factor is of the same magnitude
as the non-entangled, making an experimental detection feasible. A detailed
comparison between the current correlations of the non-local spin-singlet state
and other states, possibly emitted by the entangler, is performed. This
provides conditions for an unambiguous identification of the non-local singlet
spin entanglement.Comment: 13 pages, 8 figures, section on quantification of entanglement adde
Charge qubit entanglement in double quantum dots
We study entanglement of charge qubits in a vertical tunnel-coupled double
quantum dot containing two interacting electrons. Exact diagonalization is used
to compute the negativity characterizing entanglement. We find that
entanglement can be efficiently generated and controlled by sidegate voltages,
and describe how it can be detected. For large enough tunnel coupling, the
negativity shows a pronounced maximum at an intermediate interaction strength
within the Wigner molecule regime.Comment: revised version of the manuscript, as published in EPL, 7 pages, 4
figure
Two-particle Aharonov-Bohm effect and Entanglement in the electronic Hanbury Brown Twiss setup
We analyze a Hanbury Brown Twiss geometry in which particles are injected
from two independent sources into a mesoscopic electrical conductor. The set-up
has the property that all partial waves end in different reservoirs without
generating any single particle interference. There is no single particle
Aharonov-Bohm effect. However, exchange effects lead to two-particle
Aharonov-Bohm oscillations in current correlations. We demonstrate that the
two-particle Aharonov-Bohm effect is connected to orbital entanglement which
can be used for violation of a Bell Inequality.Comment: 4 pages, 2 figures, discussion of postselected electron-electron
entanglement adde
Quantum state tomography with quantum shotnoise
We propose a scheme for a complete reconstruction of one- and two-particle
orbital quantum states in mesoscopic conductors. The conductor in the transport
state continuously emits orbital quantum states. The orbital states are
manipulated by electronic beamsplitters and detected by measurements of average
currents and zero frequency current shotnoise correlators. We show how, by a
suitable complete set of measurements, the elements of the density matrices of
the one- and two-particle states can be directly expressed in terms of the
currents and current correlators.Comment: 4 pages, 2 figure
- âŠ