2,115 research outputs found

    Orbital entanglement and violation of Bell inequalities in the presence of dephasing

    Full text link
    We discuss orbital entanglement in mesoscopic conductors, focusing on the effect of dephasing. The entanglement is detected via violation of a Bell Inequality formulated in terms of zero-frequency current correlations. Following closely the recent work by Samuelsson, Sukhorukov and Buttiker, we investigate how the dephasing affects the possibility to violate the Bell Inequality and how system parameters can be adjusted for optimal violation.Comment: 9 pages, 2 figures. To appear in a special issue on "Quantum Computation at the Atomic Scale" in Turkish Journal of Physic

    Entanglement in Anderson Nanoclusters

    Full text link
    We investigate the two-particle spin entanglement in magnetic nanoclusters described by the periodic Anderson model. An entanglement phase diagram is obtained, providing a novel perspective on a central property of magnetic nanoclusters, namely the temperature dependent competition between local Kondo screening and nonlocal Ruderman-Kittel-Kasuya-Yoshida spin ordering. We find that multiparticle entangled states are present for finite magnetic field as well as in the mixed valence regime and away from half filling. Our results emphasize the role of charge fluctuations.Comment: 5 pages, 3 figure

    Noise and Full Counting Statistics of Incoherent Multiple Andreev Reflection

    Full text link
    We present a general theory for the full counting statistics of multiple Andreev reflections in incoherent superconducting-normal-superconducting contacts. The theory, based on a stochastic path integral approach, is applied to a superconductor-double barrier system. It is found that all cumulants of the current show a pronounced subharmonic gap structure at voltages V=2Δ/enV=2\Delta/en. For low voltages VΔ/eV\ll\Delta/e, the counting statistics results from diffusion of multiple charges in energy space, giving the ppth cumulant V2p \propto V^{2-p}, diverging for p3p\geq 3. We show that this low-voltage result holds for a large class of incoherent superconducting-normal-superconducting contacts.Comment: 4 pages, 4 figure

    Orbital entanglement and violation of Bell inequalities in mesoscopic conductors

    Full text link
    We propose a spin-independent scheme to generate and detect two-particle entanglement in a mesoscopic normal-superconductor system. A superconductor, weakly coupled to the normal conductor, generates an orbitally entangled state by injecting pairs of electrons into different leads of the normal conductor. The entanglement is detected via violation of a Bell inequality, formulated in terms of zero-frequency current cross-correlators. It is shown that the Bell inequality can be violated for arbitrary strong dephasing in the normal conductor.Comment: 4 pages, 2 figure

    Elastic Stars in General Relativity: II. Radial perturbations

    Full text link
    We study radial perturbations of general relativistic stars with elastic matter sources. We find that these perturbations are governed by a second order differential equation which, along with the boundary conditions, defines a Sturm-Liouville type problem that determines the eigenfrequencies. Although some complications arise compared to the perfect fluid case, leading us to consider a generalisation of the standard form of the Sturm-Liouville equation, the main results of Sturm-Liouville theory remain unaltered. As an important consequence we conclude that the mass-radius curve for a one-parameter sequence of regular equilibrium models belonging to some particular equation of state can be used in the same well-known way as in the perfect fluid case, at least if the energy density and the tangential pressure of the background solutions are continuous. In particular we find that the fundamental mode frequency has a zero for the maximum mass stars of the models with solid crusts considered in Paper I of this series.Comment: 22 pages, no figures, final version accepted for publication in Class. Quantum Grav. The treatment of the junction conditions has been improve

    Electrical current noise of a beam splitter as a test of spin-entanglement

    Full text link
    We investigate the spin entanglement in the superconductor-quantum dot system proposed by Recher, Sukhorukov and Loss, coupling it to an electronic beam-splitter. The superconductor-quantum dot entangler and the beam-splitter are treated within a unified framework and the entanglement is detected via current correlations. The state emitted by the entangler is found to be a linear superposition of non-local spin-singlets at different energies, a spin-entangled two-particle wavepacket. Colliding the two electrons in the beam-splitter, the singlet spin-state gives rise to a bunching behavior, detectable via the current correlators. The amount of bunching depends on the relative positions of the single particle levels in the quantum dots and the scattering amplitudes of the beam-splitter. The singlet spin entanglement, insensitive to orbital dephasing but suppressed by spin dephasing, is conveniently quantified via the Fano factors. It is found that the entanglement-dependent contribution to the Fano factor is of the same magnitude as the non-entangled, making an experimental detection feasible. A detailed comparison between the current correlations of the non-local spin-singlet state and other states, possibly emitted by the entangler, is performed. This provides conditions for an unambiguous identification of the non-local singlet spin entanglement.Comment: 13 pages, 8 figures, section on quantification of entanglement adde

    Two-particle Aharonov-Bohm effect and Entanglement in the electronic Hanbury Brown Twiss setup

    Full text link
    We analyze a Hanbury Brown Twiss geometry in which particles are injected from two independent sources into a mesoscopic electrical conductor. The set-up has the property that all partial waves end in different reservoirs without generating any single particle interference. There is no single particle Aharonov-Bohm effect. However, exchange effects lead to two-particle Aharonov-Bohm oscillations in current correlations. We demonstrate that the two-particle Aharonov-Bohm effect is connected to orbital entanglement which can be used for violation of a Bell Inequality.Comment: 4 pages, 2 figures, discussion of postselected electron-electron entanglement adde

    Mutual information in random Boolean models of regulatory networks

    Full text link
    The amount of mutual information contained in time series of two elements gives a measure of how well their activities are coordinated. In a large, complex network of interacting elements, such as a genetic regulatory network within a cell, the average of the mutual information over all pairs is a global measure of how well the system can coordinate its internal dynamics. We study this average pairwise mutual information in random Boolean networks (RBNs) as a function of the distribution of Boolean rules implemented at each element, assuming that the links in the network are randomly placed. Efficient numerical methods for calculating show that as the number of network nodes N approaches infinity, the quantity N exhibits a discontinuity at parameter values corresponding to critical RBNs. For finite systems it peaks near the critical value, but slightly in the disordered regime for typical parameter variations. The source of high values of N is the indirect correlations between pairs of elements from different long chains with a common starting point. The contribution from pairs that are directly linked approaches zero for critical networks and peaks deep in the disordered regime.Comment: 11 pages, 6 figures; Minor revisions for clarity and figure format, one reference adde
    corecore