3,107 research outputs found

    Semiclassical theory of current correlations in chaotic dot-superconductor systems

    Full text link
    We present a semiclassical theory of current correlations in multiterminal chaotic dot-superconductor junctions, valid in the absence of the proximity effect in the dot. For a dominating coupling of the dot to the normal terminals and a nonperfect dot-superconductor interface, positive cross correlations are found between currents in the normal terminals. This demonstrates that positive cross correlations can be described within a semiclassical approach. We show that the semiclassical approach is equivalent to a quantum mechanical Green's function approach with suppressed proximity effect in the dot.Comment: 5 pages, 3 figure

    Multiple Andreev reflections in hybrid multiterminal junctions

    Full text link
    We investigate theoretically charge transport in hybrid multiterminal junctions with superconducting leads kept at different voltages. It is found that multiple Andreev reflections involving several superconducting leads give rise to rich subharmonic gap structures in the current-voltage characteristics. The structures are evidenced numerically in junctions in the incoherent regime.Comment: 5 pages, 3 figure

    Chaotic dot-superconductor analog of the Hanbury Brown Twiss effect

    Full text link
    As an electrical analog of the optical Hanbury Brown Twiss effect, we study current cross-correlations in a chaotic quantum dot-superconductor junction. One superconducting and two normal reservoirs are connected via point contacts to a chaotic quantum dot. For a wide range of contact widths and transparencies, we find large positive current correlations. The positive correlations are generally enhanced by normal backscattering in the contacts. Moreover, for normal backscattering in the contacts, the positive correlations survive when suppressing the proximity effect in the dot with a weak magnetic field.Comment: 4 pages, 3 figure

    Quantized dynamics of a coherent capacitor

    Full text link
    A quantum coherent capacitor subject to large amplitude pulse cycles can be made to emit or reabsorb an electron in each half cycle. Quantized currents with pulse cycles in the GHz range have been demonstrated experimentally. We develop a non-linear dynamical scattering theory for arbitrary pulses to describe the properties of this very fast single electron source. Using our theory we analyze the accuracy of the current quantization and investigate the noise of such a source. Our results are important for future scientific and possible metrological applications of this source.Comment: 4 pages, 2 figure

    Orbital entanglement and violation of Bell inequalities in the presence of dephasing

    Full text link
    We discuss orbital entanglement in mesoscopic conductors, focusing on the effect of dephasing. The entanglement is detected via violation of a Bell Inequality formulated in terms of zero-frequency current correlations. Following closely the recent work by Samuelsson, Sukhorukov and Buttiker, we investigate how the dephasing affects the possibility to violate the Bell Inequality and how system parameters can be adjusted for optimal violation.Comment: 9 pages, 2 figures. To appear in a special issue on "Quantum Computation at the Atomic Scale" in Turkish Journal of Physic

    Quantum heat fluctuations of single particle sources

    Full text link
    Optimal single electron sources emit regular streams of particles, displaying no low frequency charge current noise. Due to the wavepacket nature of the emitted particles, the energy is however fluctuating, giving rise to heat current noise. We investigate theoretically this quantum source of heat noise for an emitter coupled to an electronic probe in the hot-electron regime. The distribution of temperature and potential fluctuations induced in the probe is shown to provide direct information on the single particle wavefunction properties and display strong non-classical features.Comment: 5 pages, 2 figure

    Shot noise of photon-excited electron-hole pairs in open quantum dots

    Full text link
    We investigate shot noise of photon-excited electron-hole pairs in open multi-terminal, multi-channel chaotic dots. Coulomb interactions in the dot are treated self-consistently giving a gauge-invariant expression for the finite frequency correlations. The Coulomb interactions decrease the noise, the strong interaction limit coincides with the non-interacting adiabatic limit. Inelastic scattering and dephasing in the dot are described by voltage and dephasing probe models respectively. We find that dephasing leaves the noise invariant, but inelastic scattering decreases correlations eventually down to zero.Comment: 4 pages, 1 figure; minor changes, 3 references adde

    Hanbury Brown Twiss effects in channel mixing normal-superconducting systems

    Full text link
    An investigation of the role of the proximity effect in current cross correlations in multiterminal, channel-mixing, normal-superconducting systems is presented. The proposed experiment is an electrical analog of the optical Hanbury Brown Twiss intensity cross correlation experiment. A chaotic quantum dot is connected via quantum point contacts to two normal and one superconducting reservoir. For dominating coupling of the dot to the superconducting reservoir, a magnetic flux of the order of a flux quantum in the dot suppresses the proximity effect and reverses the sign of the cross correlations, from positive to negative. In the opposite limit, for a dominating coupling to the normal reservoirs, the proximity effect is weak and the cross correlation are positive for a nonideal contact between the dot and the superconducting reservoir. We show that in this limit the correlations can be explained with particle counting arguments.Comment: Invited talk at LT2

    Entanglement in Anderson Nanoclusters

    Full text link
    We investigate the two-particle spin entanglement in magnetic nanoclusters described by the periodic Anderson model. An entanglement phase diagram is obtained, providing a novel perspective on a central property of magnetic nanoclusters, namely the temperature dependent competition between local Kondo screening and nonlocal Ruderman-Kittel-Kasuya-Yoshida spin ordering. We find that multiparticle entangled states are present for finite magnetic field as well as in the mixed valence regime and away from half filling. Our results emphasize the role of charge fluctuations.Comment: 5 pages, 3 figure
    corecore