44 research outputs found

    Hazardous Off-Gassing of Carbon Monoxide and Oxygen Depletion during Ocean Transportation of Wood Pellets

    Get PDF
    Five ocean vessels were investigated for the characterization and quantification of gaseous compounds emitted during ocean transportation of wood pellets in closed cargo hatches from Canada to Sweden. The study was initiated after a fatal accident with several injured during discharge in Sweden. The objective with the investigation was to better understand the off-gassing and issues related to workers' exposure. Air sampling was done during transport and immediately before discharge in the undisturbed headspace air above the wood pellets and in the staircase adjacent to each hatch. The samples were analyzed with Fourier transform infrared spectroscopy and direct reading instruments. The following compounds and ranges were detected in samples from the five ships: carbon monoxide (CO) 1460–14650 ppm, carbon dioxide (CO2) 2960–21570 ppm, methane 79.9–956 ppm, butane equivalents 63–842 ppm, ethylene 2–21.2 ppm, propylene 5.3–36 ppm, ethane 0–25 ppm and aldehydes 2.3–35 ppm. The oxygen levels were between 0.8 and 16.9%. The concentrations in the staircases were almost as high as in the cargo hatches, indicating a fairly free passage of air between the two spaces. A potentially dangerous atmosphere was reached within a week from loading. The conclusions are that ocean transportation of wood pellets in confined spaces may produce an oxygen deficient atmosphere and lethal levels of CO which may leak into adjacent access spaces. The dangerous combination of extremely high levels of CO and reduced oxygen produces a fast-acting toxic combination. Measurement of CO in combination with oxygen is essential prior to entry in spaces having air communication with cargo hatches of wood pellets. Forced ventilation of staircases prior to entry is necessary. Redesign, locking and labeling of access doors and the establishment of rigorous entry procedures and training of onboard crew as well as personnel boarding ocean vessels are also important

    Quantification of methane emissions from 15 Danish landfills using the mobile tracer dispersion method

    Get PDF
    Whole-site methane emissions from 15 Danish landfills were assessed using a mobile tracer dispersion method with either Fourier transform infrared spectroscopy (FTIR), using nitrous oxide as a tracer gas, or cavity ring-down spectrometry (CRDS), using acetylene as a tracer gas. The landfills were chosen to represent the different stages of the lifetime of a landfill, including open, active, and closed covered landfills, as well as those with and without gas extraction for utilisation or flaring. Measurements also included landfills with biocover for oxidizing any fugitive methane. Methane emission rates ranged from 2.6 to 60.8kgh -1 , corresponding to 0.7-13.2gm -2 d -1 , with the largest emission rates per area coming from landfills with malfunctioning gas extraction systems installed, and the smallest emission rates from landfills closed decades ago and landfills with an engineered biocover installed. Landfills with gas collection and recovery systems had a recovery efficiency of 41-81%. Landfills where shredder waste was deposited showed significant methane emissions, with the largest emission from newly deposited shredder waste. The average methane emission from the landfills was 154tonsy -1 . This average was obtained from a few measurement campaigns conducted at each of the 15 landfills and extrapolating to annual emissions requires more measurements. Assuming that these landfills are representative of the average Danish landfill, the total emission from Danish landfills were calculated at 20,600tonsy -1 , which is significantly lower than the 33,300tonsy -1 estimated for the national greenhouse gas inventory for 2011

    Quantification of Greenhouse Gas Emissions from Windrow Composting of Garden Waste

    Get PDF
    Microbial degradation of organic wastes entails the production of various gases such as carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and carbon monoxide (CO). Some of these gases are classified as greenhouse gases (GHGs), thus contributing to climate change. A study was performed to evaluate three methods for quantifying GHG emissions from central composting of garden waste. Two small-scale methods were used at a windrow composting facility: a static flux chamber method and a funnel method. Mass balance calculations based on measurements of the C content in the in- and out-going material showed that 91 to 94% of the C could not be accounted for using the small-scale methods, thereby indicating that these methods significantly underestimate GHG emissions. A dynamic plume method (total emission method) employing Fourier Transform Infra Red (FTIR) absorption spectroscopy was found to give a more accurate estimate of the GHG emissions, with CO2 emissions measured to be 127 +/- 15% of the degraded C. Additionally, with this method, 2.7 +/- 0.6% and 0.34 +/- 0.16% of the degraded C was determined to be emitted as CH4 and CO. In this study, the dynamic plume method was a more effective tool for accounting for C losses and, therefore, we believe that the method is Suitable for measuring GHG emissions from composting facilities. The total emissions were found to be 2.4 +/- 0.5 kg CH4-C Mg-1 wet waste (ww) and 0.06 +/- 0.03 kg N2O-N Mg-1 ww from a facility treating 15,540 Mg of garden waste yr(-1), or 111 +/- 30 kg CO2-equivalents Mg-1 ww

    Measurements of industrial emissions of alkenes in Texas using the solar occultation flux method

    Get PDF
    Solar occultation flux (SOF) measurements of alkenes have been conducted to identify and quantify the largest emission sources in the vicinity of Houston and in SE Texas during September 2006 as part of the TexAQS 2006 campaign. The measurements have been compared to emission inventories and have been conducted in parallel with airborne plume studies. The SOF measurements show that the hourly gas emissions from the large petrochemical and refining complexes in the Houston Ship Channel area and Mount Belvieu during September 2006 corresponded to 1250 +/- 180 kg/h of ethene and 2140 +/- 520 kg/h of propene, with an estimated uncertainty of about 35%. This can be compared to the 2006 emission inventory value for ethene and propene of 145 +/- 4 and 181 +/- 42 kg/h, respectively. On average, for all measurements during the campaign, the discrepancy factor is 10.2(+ 8,-5) for ethene and 11.7(+ 7,-4) for propene. The largest emission source was Mount Belvieu, NE of the Houston Ship Channel, with ethene and propene emissions corresponding to 440 +/- 130 kg/h and 490 +/- 190 kg/h, respectively. Large variability of propene was observed from several petrochemical industries, for which the largest reported emission sources are flares. The SOF alkene emissions agree within 50% with emissions derived from airborne measurements at three different sites. The airborne measurements also provide support to the SOF error budget

    Emission measurements of alkenes, alkanes, SO2, and NO2 from stationary sources in Southeast Texas over a 5 year period using SOF and mobile DOAS

    Get PDF
    A mobile platform for flux measurements of VOCs (alkanes and alkenes), SO2, and NO2 emissions using the Solar Occultation Flux (SOF) method and mobile differential optical absorption spectroscopy (DOAS) was used in four different studies to measure industrial emissions. The studies were carried out in several large conglomerates of oil refineries and petrochemical industries in Southeast and East Texas in 2006, 2009, 2011, and 2012. The measured alkane emissions from the Houston Ship Channel (HSC) have been fairly stable between 2006 and 2011, averaging about 11,500kg/h, while the alkene emissions have shown greater variations. The ethene and propene emissions measured from the HSC were 1511kg/h and 878kg/h, respectively, in 2006, while dropping to roughly 600kg/h for both species in 2009 and 2011. The results were compared to annual inventory emissions, showing that measured VOC emissions were typically 5-15 times higher, while for SO2 and NO2 the ratio was typically 0.5-2. AP-42 emission factors were used to estimate meteorological effects on alkane emissions from tanks, showing that these emissions may have been up to 35-45% higher during the studies than the annual average. A more focused study of alkene emissions from a petrochemical complex in Longview in 2012 identified two upset episodes, and the elevation of the total emissions during the measurement period due to the upsets was estimated to be approximately 20%. Both meteorological and upset effects were small compared to the factor of 5-15, suggesting that VOC emissions are systematically and substantially underestimated in current emission inventories

    Methane emissions from industrial activities using drones

    Get PDF
    Innovative drone-based methods have been developed to map and quantify methane leakages from various industrial activities, such as refineries, Liquified Natural Gas (LNG) terminals, landfills, and water treatment facilities. These methods use a high-speed, high-sensitivity laser sensor and were validated through controlled gas releases. They were also compared to a ground-based infrared absorption-based technique. This initiative is supported by the Swedish Governmental Agency for Innovation Systems (Vinnova) and aligns with UN Sustainable Development Goals 9, 11, and 13. The goal is to reduce methane emissions significantly, aiding Sweden in achieving net-zero greenhouse gas emissions by 2045. Accurate measurements enable effective, targeted, and trackable measures to minimize emissions, resulting in a rapid positive climate impact. The project has led to the development of two distinct drone-based methods: the wall approach and the tracer approach. The wall approach measures gas concentrations across the entire cross-section of the plume, whereas the tracer approach measures the ratio of leaking gas to source gas. Depending on the source\u27s size, one approach may be preferred over the other, with the tracer method being more suitable for point sources and the wall approach for larger sources. The custom-designed drone in this project, provided and operated by Gerdes Solution. is equipped with a high-sensitivity laser sensor and has a flight duration of about 12 minutes while carrying a 3 kg payload. This limitation presents a challenge when conducting wall measurements, which require approximately 25 minutes of flight time for the studied sources. Due to the drone\u27s limited flight time, it necessitates landing and battery replacement, which complicates the process and limits the number of repeat measurements. In future endeavors, employing a drone with a longer flight duration would be advantageous. In total, the study detected about 220 kg/h of methane emissions and 3 kg/h of nitrous oxide emissions, equivalent to an emission rate of about 7 tons/h of carbon dioxide. The emissions were dominated by the water treatment plant and landfills, with relatively little coming from the refinery and LNG plant. However, the wall measurements in thus study serve as demonstrations of how the technique can be used and do not provide a comprehensive picture of the actual emissions from the individual sites; this would require more statistical data in terms of repeat measurements and measurement days. It is shown that drone measurements using the new high sensitivity laser is a valuable tool for mapping methane concentrations from various types of industrial sources, which are challenging to investigate today due to diffuse emissions, large dimensions, and complex geometries. The validation studies show that both the wall approach and controlled tracer releases can be used to quantify emissions, achieving an accuracy of up to 10 % for a simple, single, source. However, in the real measurement situation, the wall approach may be difficult to execute due to practical challenges like flying restrictions and the need for spatially dense data that can be interpolated to a homogenous grid and repeated measurements. In several cases, when the drone had to fly relatively close to the plumes, downwind of large buildings in complex and turbulent wind fields, the wall approach yielded large variability in the resulting flux. It is hence evident that the wall approach requires a thorough understanding of the measurement situation, and that repeated measurements are needed, at different distances from the source and in varying wind directions. The tracer approach was therefore preferred choice for obtaining emission rates in this study, although it is challenging to carry out representative tracer releases for larger sources and for cases when the measurements are performed near to the source, and in this case the wall approach is preferred. It was also shown that the drone-based tracer approach is advantageous to the ground based since it is then easier to capture the full plume

    Modelling constraints on the emission inventory and on vertical dispersion for CO and SO2 in the Mexico City Metropolitan Area using Solar FTIR and zenith sky UV spectroscopy

    Get PDF
    Emissions of air pollutants in and around urban areas lead to negative health impacts on the population. To estimate these impacts, it is important to know the sources and transport mechanisms of the pollutants accurately. Mexico City has a large urban fleet in a topographically constrained basin leading to high levels of carbon monoxide ( CO). Large point sources of sulfur dioxide (SO2) surrounding the basin lead to episodes with high concentrations. An Eulerian grid model (CAMx) and a particle trajectory model ( FLEXPART) are used to evaluate the estimates of CO and SO2 in the current emission inventory using mesoscale meteorological simulations from MM5. Vertical column measurements of CO are used to constrain the total amount of emitted CO in the model and to identify the most appropriate vertical dispersion scheme. Zenith sky UV spectroscopy is used to estimate the emissions of SO2 from a large power plant and the Popocatepetl volcano. Results suggest that the models are able to identify correctly large point sources and that both the power plant and the volcano impact the MCMA. Modelled concentrations of CO based on the current emission inventory match observations suggesting that the current total emissions estimate is correct. Possible adjustments to the spatial and temporal distribution can be inferred from model results. Accurate source and dispersion modelling provides feedback for development of the emission inventory, verification of transport processes in air quality models and guidance for policy decisions

    Quantifying industrial emissions by measuring infrared intensity of solar spectra - the SOF technique

    No full text
    Optical techniques attract increasing interest and usage for quantifying industrial emissions. The Solar Occultation Flux (SOF) method has been applied in numerous international surveys. Technical aspects and survey findings of general interest are discussed

    Methane oxidation in Swedish landfills qnantified with the stable carbon isotope technique in combination with an optical method for emitted methane

    No full text
    Methane budgets (production = emissions + oxidation + recovery) were estimated for six landfill sites in Sweden. Methane oxidation was measured in downwind plumes with a stable isotope technique (Chariton, J. P., et al., Environ. Sci. TechnoL 1999, 33, 3755-3760.) Positions in plumes for isotope sampling as well as methane emissions were determined with an optical instrument (Fourier Transform InfraRed) in combination with N2O as tracer gas (Galle, B., et al., Environ. Sci. TechnoL 2001, 35,21-25.) Two landfills had been closed for years prior to the measurements, while four were active. Measurements at comparable soil temperatures showed that the two closed landfills had a significantly higher fraction of oxidized methane (38-42% of emission) relative to the four active landfills (4.6-15% of emission). These results highlight the importance of installing and maintaining effective landfill covers and also indicate that substantial amounts of methane escape from active landfills. Based on these results we recommend that the IPCC default values for methane oxidation in managed landfills could be set to 10% for active sites and 20% for closed sites. Gas recovery was found to be highly variable at the different sites, with values from 14% up to 65% of total methane production. The variance can be attributed to different waste management practices
    corecore