3,054 research outputs found

    Biallelic P4HTM variants associated with HIDEA syndrome and mitochondrial respiratory chain complex I deficiency

    Get PDF
    We report a patient with profound congenital hypotonia, central hypoventilation, poor visual behaviour with retinal hypopigmentation, and significantly decreased mitochondrial respiratory chain complex I activity in muscle, who died at 7 months of age having made minimal developmental progress. Biallelic predicted truncating P4HTM variants were identified following trio whole-genome sequencing, consistent with a diagnosis of hypotonia, hypoventilation, intellectual disability, dysautonomia, epilepsy and eye abnormalities (HIDEA) syndrome. Very few patients with HIDEA syndrome have been reported previously and mitochondrial abnormalities were observed in three of four previous cases who had a muscle biopsy, suggesting the possibility that HIDEA syndrome represents a primary mitochondrial disorder. P4HTM encodes a transmembrane prolyl 4-hydroxylase with putative targets including hypoxia inducible factors, RNA polymerase II and activating transcription factor 4, which has been implicated in the integrated stress response observed in cell and animal models of mitochondrial disease, and may explain the mitochondrial dysfunction observed in HIDEA syndrome

    Phase diagram of turbulence in superfluid 3He-B

    Full text link
    In superfluid 3He-B mutual-friction damping of vortex-line motion decreases roughly exponentially with temperature. We record as a function of temperature and pressure the transition from regular vortex motion at high temperatures to turbulence at low temperatures. The measurements are performed with non-invasive NMR techniques, by injecting vortex loops into a long column in vortex-free rotation. The results display the phase diagram of turbulence at high flow velocities where the transition from regular to turbulent dynamics is velocity independent. At the three measured pressures 10.2, 29.0, and 34 bar, the transition is centered at 0.52--0.59Tc and has a narrow width of 0.06Tc while at zero pressure turbulence is not observed above 0.45Tc.Comment: To be published in J. Low Temp. Phys. (QFS2004 proceedings

    Emergency Triage Assessment and Treatment Plus (ETAT+): adapting training to strengthen quality improvement and task-sharing in emergency paediatric care in Sierra Leone

    Get PDF
    BACKGROUND: Over the past 25 years Sierra Leone has made progress in reducing maternal and child mortality, but the burden of preventable paediatric deaths remains high. Further progress towards achieving the Sustainable Development Goals will require greater strengthening of the health care system, including hospital care for perinatal and paediatric conditions. Emergency Triage Assessment and Treatment Plus (ETAT+) may offer a useful tool. METHODS: The five-day ETAT+ course was adapted as a six-month programme of in-situ training and mentoring integrated with patient flow and service delivery improvements in 14 regional and district government hospitals across the country. Nurses were trained to carry out the initial resuscitation and assessment of the sick paediatric patient, and to administer the first dose of medication per protocol. The course was for all clinical staff; most participants were nurses. RESULTS: The intervention was associated with an improvement in the quality of paediatric care and a reduction in mortality. In 2017 mortality decreased by 33.1%, from 14.5% at baseline to 9.7% after six months of the intervention. Mortality at the start of the 2018 intervention was 8.5% and reduced over six months to 6.5%. Care quality indicators showed improvement across the two intervention periods, with some evidence of sustained effect. CONCLUSIONS: These results suggest that adapted ETAT+ training with in-situ mentoring alongside improved patient flow and service delivery supports improvements in the quality of paediatric care in Sierra Leonean hospitals. ETAT+ may provide an affordable framework for improving the quality of secondary paediatric care in Sierra Leone and a model of nurse-led resuscitation may allow for prompt and timely emergency paediatric care in Sierra Leonean hospitals where there are fewer physicians and other resources for care

    Parameterization of mixed layer eddies. III: Implementation and impact in global ocean climate simulations

    Get PDF
    A parameterization for the restratification by finite-amplitude, submesoscale, mixed layer eddies, formulated as an overturning streamfunction, has been recently proposed to approximate eddy fluxes of density and other tracers. Here, the technicalities of implementing the parameterization in the coarse-resolution ocean component of global climate models are made explicit, and the primary impacts on model solutions of implementing the parameterization are discussed. Three global ocean general circulation models including this parameterization are contrasted with control simulations lacking the parameterization. The MLE parameterization behaves as expected and fairly consistently in models differing in discretization, boundary layer mixing, resolution, and other parameterizations. The primary impact of the parameterization is a shoaling of the mixed layer, with the largest effect in polar winter regions. Secondary impacts include strengthening the Atlantic meridional overturning while reducing its variability, reducing CFC and tracer ventilation, modest changes to sea surface temperature and air–sea fluxes, and an apparent reduction of sea ice basal melting.National Science Foundation (U.S.) (Grant OCE-0612143)National Science Foundation (U.S.) (Grant OCE-0612059)National Science Foundation (U.S.) (Grant OCE-0825376)National Science Foundation (U.S.) (Grant DMS-0855010)National Science Foundation (U.S.) (Grant OCE-0934737

    Lumped Parameter Models of the Central Nervous System for VIIP Research

    Get PDF
    INTRODUCTION: Current long-duration missions to the International Space Station and future exploration-class missions beyond low-Earth orbit, such as to Mars and asteroids, expose astronauts to increased risk of Visual Impairment and Intracranial Pressure (VIIP) syndrome [1]. It has been hypothesized that the headward shift of cerebral spinal fluid (CSF) and blood in microgravity may cause significant elevation of intracranial pressure (ICP), which in turn induces VIIP syndrome through biomechanical pathways [1, 2]. However, there is insufficient evidence to confirm this hypothesis. In this light, we are developing lumped-parameter models of fluid transport in the central nervous system (CNS) as a means to simulate the influence of microgravity on ICP. The CNS models will also be used in concert with the lumped parameter and finite element models of the eye described in the realted IWS abstracts submitted by Nelson et al., Feola et al. and Ethier et al. METHODS: We have developed a nine compartment CNS model (Figure 1) capable of both time-dependent and steady state fluid transport simulations, based on the works of Stevens et al. [3]. The breakdown of compartments within the model includes: vascular (3), CSF (2), brain (1) and extracranial (3). The boundary pressure in the Central Arteries [A] node is prescribed using an oscillating pressure function PA(t) simulating the carotid pulsatile pressure wave as developed by Linninger et al. [4]. For each time step, pressures are integrated through time using an adaptive-timestep 4th and 5th order Runga-Kutta solver. Once pressures are found, constitutive equations are used to solve for flowrates (Q) between each compartment. In addition to fluid flow between the different compartments, compliance (C) interactions between neighboring compartments are represented. We are also developing a second CNS model based on the works of Linninger et al. [4] which takes a more granular approach to represent the interactions of the intracranial and spinal compartments with the inclusion of arteries, arterioles, capillaries, venules, veins, venous sinus, and ventricles. The flow through the arteries, veins and CSF compartments are governed by continuity, momentum and distensibility balance equations. Furthermore, unlike the Stevens et al. approach, the Monro-Kellie doctrine of constant cranial volume and the bi-phasic nature of the brain parenchyma are implemented. These features appear to be more consistent with the physiologic and anatomical behavior of the CNS, and follow a modeling philosophy similar to the lumped parameter eye model that is intended to be integrated with the CNS model. However, Linningers approach has never been implemented to include hydrostatic gradient and microgravity simulation capabilities. Therefore, we aim at implement this modeling approach for spaceflight simulations and assess its overall applicability to VIIP research. OBJECTIVES: We will present verification and validation test results for both models, as well as head-to-head comparison to explore their strengths and limitations with respect to mathematical implementation and physiological significance for VIIP research. In doing so, we hope to provide some guidance to the HRP research community on how to appropriately leverage lumped parameter models for space biomedical research

    An Integrated Model of the Cardiovascular and Central Nervous Systems for Analysis of Microgravity Induced Fluid Redistribution

    Get PDF
    A recognized side effect of prolonged microgravity exposure is visual impairment and intracranial pressure (VIIP) syndrome. The medical understanding of this phenomenon is at present preliminary, although it is hypothesized that the headward shift of bodily fluids in microgravity may be a contributor. Computational models can be used to provide insight into the origins of VIIP. In order to further investigate this phenomenon, NASAs Digital Astronaut Project (DAP) is developing an integrated computational model of the human body which is divided into the eye, the cerebrovascular system, and the cardiovascular system. This presentation will focus on the development and testing of the computational model of an integrated model of the cardiovascular system (CVS) and central nervous system (CNS) that simulates the behavior of pressures, volumes, and flows within these two physiological systems

    Considering Intra-individual Genetic Heterogeneity to Understand Biodiversity

    Get PDF
    In this chapter, I am concerned with the concept of Intra-individual Genetic Hetereogeneity (IGH) and its potential influence on biodiversity estimates. Definitions of biological individuality are often indirectly dependent on genetic sampling -and vice versa. Genetic sampling typically focuses on a particular locus or set of loci, found in the the mitochondrial, chloroplast or nuclear genome. If ecological function or evolutionary individuality can be defined on the level of multiple divergent genomes, as I shall argue is the case in IGH, our current genetic sampling strategies and analytic approaches may miss out on relevant biodiversity. Now that more and more examples of IGH are available, it is becoming possible to investigate the positive and negative effects of IGH on the functioning and evolution of multicellular individuals more systematically. I consider some examples and argue that studying diversity through the lens of IGH facilitates thinking not in terms of units, but in terms of interactions between biological entities. This, in turn, enables a fresh take on the ecological and evolutionary significance of biological diversity

    Numerical Modeling of Ophthalmic Response to Space

    Get PDF
    To investigate ophthalmic changes in spaceflight, we would like to predict the impact of blood dysregulation and elevated intracranial pressure (ICP) on Intraocular Pressure (IOP). Unlike other physiological systems, there are very few lumped parameter models of the eye. The eye model described here is novel in its inclusion of the human choroid and retrobulbar subarachnoid space (rSAS), which are key elements in investigating the impact of increased ICP and ocular blood volume. Some ingenuity was required in modeling the blood and rSAS compartments due to the lack of quantitative data on essential hydrodynamic quantities, such as net choroidal volume and blood flowrate, inlet and exit pressures, and material properties, such as compliances between compartments

    Pre-pregnancy predictors of hypertension in pregnancy among Aboriginal and Torres Strait Islander women in north Queensland, Australia; a prospective cohort study

    Get PDF
    BACKGROUND Compared to other Australian women, Indigenous women are frequently at greater risk for hypertensive disorders of pregnancy. We examined pre-pregnancy factors that may predict hypertension in pregnancy in a cohort of Aboriginal and Torres Strait Islander women in north Queensland. METHODS Data on a cohort of 1009 Indigenous women of childbearing age (15–44 years) who participated in a 1998–2000 health screening program in north Queensland were combined with 1998–2008 Queensland hospitalisations data using probabilistic data linkage. Data on the women in the cohort who were hospitalised for birth (n = 220) were further combined with Queensland perinatal data which identified those diagnosed with hypertension in pregnancy. RESULTS Of 220 women who gave birth, 22 had hypertension in the pregnancy after their health check. The mean age of women with and without hypertension was similar (23.7 years and 23.9 years respectively) however Aboriginal women were more affected compared to Torres Strait Islanders. Pre-pregnancy adiposity and elevated blood pressure at the health screening program were predictors of a pregnancy affected by hypertension. After adjusting for age and ethnicity, each 1 cm increase in waist circumference showed a 4% increased risk for hypertension in pregnancy (PR 1.04; 95% CI; 1.02-1.06); each 1 point increase in BMI showed a 9% adjusted increase in risk (1.09; 1.04-1.14). For each 1 mmHg increase in baseline systolic blood pressure there was an age and ethnicity adjusted 6% increase in risk and each 1 mmHg increase in diastolic blood pressure showed a 7% increase in risk (1.06; 1.03-1.09 and 1.07; 1.03-1.11 respectively). Among those free of diabetes at baseline, the presence of the metabolic syndrome (International Diabetes Federation criteria) predicted over a three-fold increase in age-ethnicity-adjusted risk (3.5; 1.50-8.17). CONCLUSIONS Pre-pregnancy adiposity and features of the metabolic syndrome among these young Aboriginal and Torres Strait Islander women track strongly to increased risk of hypertension in pregnancy with associated risks to the health of babies.Sandra K Campbell, John Lynch, Adrian Esterman and Robyn McDermot
    • …
    corecore