332 research outputs found

    Considering Intra-individual Genetic Heterogeneity to Understand Biodiversity

    Get PDF
    In this chapter, I am concerned with the concept of Intra-individual Genetic Hetereogeneity (IGH) and its potential influence on biodiversity estimates. Definitions of biological individuality are often indirectly dependent on genetic sampling -and vice versa. Genetic sampling typically focuses on a particular locus or set of loci, found in the the mitochondrial, chloroplast or nuclear genome. If ecological function or evolutionary individuality can be defined on the level of multiple divergent genomes, as I shall argue is the case in IGH, our current genetic sampling strategies and analytic approaches may miss out on relevant biodiversity. Now that more and more examples of IGH are available, it is becoming possible to investigate the positive and negative effects of IGH on the functioning and evolution of multicellular individuals more systematically. I consider some examples and argue that studying diversity through the lens of IGH facilitates thinking not in terms of units, but in terms of interactions between biological entities. This, in turn, enables a fresh take on the ecological and evolutionary significance of biological diversity

    Borrelia burgdorferi Requires the Alternative Sigma Factor RpoS for Dissemination within the Vector during Tick-to-Mammal Transmission

    Get PDF
    While the roles of rpoSBb and RpoS-dependent genes have been studied extensively within the mammal, the contribution of the RpoS regulon to the tick-phase of the Borrelia burgdorferi enzootic cycle has not been examined. Herein, we demonstrate that RpoS-dependent gene expression is prerequisite for the transmission of spirochetes by feeding nymphs. RpoS-deficient organisms are confined to the midgut lumen where they transform into an unusual morphotype (round bodies) during the later stages of the blood meal. We show that round body formation is rapidly reversible, and in vitro appears to be attributable, in part, to reduced levels of Coenzyme A disulfide reductase, which among other functions, provides NAD+ for glycolysis. Our data suggest that spirochetes default to an RpoS-independent program for round body formation upon sensing that the energetics for transmission are unfavorable

    BosR (BB0647) Controls the RpoN-RpoS Regulatory Pathway and Virulence Expression in Borrelia burgdorferi by a Novel DNA-Binding Mechanism

    Get PDF
    In Borrelia burgdorferi (Bb), the Lyme disease spirochete, the alternative σ factor σ54 (RpoN) directly activates transcription of another alternative σ factor, σS (RpoS) which, in turn, controls the expression of virulence-associated membrane lipoproteins. As is customary in σ54-dependent gene control, a putative NtrC-like enhancer-binding protein, Rrp2, is required to activate the RpoN-RpoS pathway. However, recently it was found that rpoS transcription in Bb also requires another regulator, BosR, which was previously designated as a Fur or PerR homolog. Given this unexpected requirement for a second activator to promote σ54-dependent gene transcription, and the fact that regulatory mechanisms among similar species of pathogenic bacteria can be strain-specific, we sought to confirm the regulatory role of BosR in a second virulent strain (strain 297) of Bb. Indeed, BosR displayed the same influence over lipoprotein expression and mammalian infectivity for strain Bb 297 that were previously noted for Bb strain B31. We subsequently found that recombinant BosR (rBosR) bound to the rpoS gene at three distinct sites, and that binding occurred despite the absence of consensus Fur or Per boxes. This led to the identification of a novel direct repeat sequence (TAAATTAAAT) critical for rBosR binding in vitro. Mutations in the repeat sequence markedly inhibited or abolished rBosR binding. Taken together, our studies provide new mechanistic insights into how BosR likely acts directly on rpoS as a positive transcriptional activator. Additional novelty is engendered by the facts that, although BosR is a Fur or PerR homolog and it contains zinc (like Fur and PerR), it has other unique features that clearly set it apart from these other regulators. Our findings also have broader implications regarding a previously unappreciated layer of control that can be involved in σ54–dependent gene regulation in bacteria

    Role of Acetyl-Phosphate in Activation of the Rrp2-RpoN-RpoS Pathway in Borrelia burgdorferi

    Get PDF
    Borrelia burgdorferi, the Lyme disease spirochete, dramatically alters its transcriptome and proteome as it cycles between the arthropod vector and mammalian host. During this enzootic cycle, a novel regulatory network, the Rrp2-RpoN-RpoS pathway (also known as the σ54–σS sigma factor cascade), plays a central role in modulating the differential expression of more than 10% of all B. burgdorferi genes, including the major virulence genes ospA and ospC. However, the mechanism(s) by which the upstream activator and response regulator Rrp2 is activated remains unclear. Here, we show that none of the histidine kinases present in the B. burgdorferi genome are required for the activation of Rrp2. Instead, we present biochemical and genetic evidence that supports the hypothesis that activation of the Rrp2-RpoN-RpoS pathway occurs via the small, high-energy, phosphoryl-donor acetyl phosphate (acetyl∼P), the intermediate of the Ack-Pta (acetate kinase-phosphate acetyltransferase) pathway that converts acetate to acetyl-CoA. Supplementation of the growth medium with acetate induced activation of the Rrp2-RpoN-RpoS pathway in a dose-dependent manner. Conversely, the overexpression of Pta virtually abolished acetate-induced activation of this pathway, suggesting that acetate works through acetyl∼P. Overexpression of Pta also greatly inhibited temperature and cell density-induced activation of RpoS and OspC, suggesting that these environmental cues affect the Rrp2-RpoN-RpoS pathway by influencing acetyl∼P. Finally, overexpression of Pta partially reduced infectivity of B. burgdorferi in mice. Taken together, these findings suggest that acetyl∼P is one of the key activating molecule for the activation of the Rrp2-RpoN-RpoS pathway and support the emerging concept that acetyl∼P can serve as a global signal in bacterial pathogenesis

    Levothyroxine Monotherapy Cannot Guarantee Euthyroidism in All Athyreotic Patients

    Get PDF
    CONTEXT: Levothyroxine monotherapy is the treatment of choice for hypothyroid patients because peripheral T4 to T3 conversion is believed to account for the overall tissue requirement for thyroid hormones. However, there are indirect evidences that this may not be the case in all patients. OBJECTIVE: To evaluate in a large series of athyreotic patients whether levothyroxine monotherapy can normalize serum thyroid hormones and thyroid-pituitary feedback. DESIGN: Retrospective study. SETTING: Academic hospital. PATIENTS: 1,811 athyreotic patients with normal TSH levels under levothyroxine monotherapy and 3,875 euthyroid controls. MEASUREMENTS: TSH, FT4 and FT3 concentrations by immunoassays. RESULTS: FT4 levels were significantly higher and FT3 levels were significantly lower (p<0.001 in both cases) in levothyroxine-treated athyreotic patients than in matched euthyroid controls. Among the levothyroxine-treated patients 15.2% had lower serum FT3 and 7.2% had higher serum FT4 compared to euthyroid controls. A wide range of FT3/FT4 ratios indicated a major heterogeneity in the peripheral T3 production capacity in different individuals. The correlation between thyroid hormones and serum TSH levels indicated an abnormal feedback mechanism in levothyroxine-treated patients. CONCLUSIONS: Athyreotic patients have a highly heterogeneous T3 production capacity from orally administered levothyroxine. More than 20% of these patients, despite normal TSH levels, do not maintain FT3 or FT4 values in the reference range, reflecting the inadequacy of peripheral deiodination to compensate for the absent T3 secretion. The long-term effects of chronic tissue exposure to abnormal T3/T4 ratio are unknown but a sensitive marker of target organ response to thyroid hormones (serum TSH) suggests that this condition causes an abnormal pituitary response. A more physiological treatment than levothyroxine monotherapy may be required in some hypothyroid patients

    Effect of Levels of Acetate on the Mevalonate Pathway of Borrelia burgdorferi

    Get PDF
    Borrelia burgdorferi, the agent of Lyme disease, is a spirochetal pathogen with limited metabolic capabilities that survives under highly disparate host-specific conditions. However, the borrelial genome encodes several proteins of the mevalonate pathway (MP) that utilizes acetyl-CoA as a substrate leading to intermediate metabolites critical for biogenesis of peptidoglycan and post-translational modifications of proteins. In this study, we analyzed the MP and contributions of acetate in modulation of adaptive responses in B. burgdorferi. Reverse-transcription PCR revealed that components of the MP are transcribed as individual open reading frames. Immunoblot analysis using monospecific sera confirmed synthesis of members of the MP in B. burgdorferi. The rate-limiting step of the MP is mediated by HMG-CoA reductase (HMGR) via conversion of HMG-CoA to mevalonate. Recombinant borrelial HMGR exhibited a Km value of 132 µM with a Vmax of 1.94 µmol NADPH oxidized minute−1 (mg protein)−1 and was inhibited by statins. Total protein lysates from two different infectious, clonal isolates of B. burgdorferi grown under conditions that mimicked fed-ticks (pH 6.8/37°C) exhibited increased levels of HMGR while other members of the MP were elevated under unfed-tick (pH 7.6/23°C) conditions. Increased extra-cellular acetate gave rise to elevated levels of MP proteins along with RpoS, CsrABb and their respective regulons responsible for mediating vertebrate host-specific adaptation. Both lactone and acid forms of two different statins inhibited growth of B. burgdorferi strain B31, while overexpression of HMGR was able to partially overcome that inhibition. In summary, these studies on MP and contributions of acetate to host-specific adaptation have helped identify potential metabolic targets that can be manipulated to reduce the incidence of Lyme disease

    A simple and robust real-time qPCR method for the detection of PIK3CA mutations

    Get PDF
    PIK3CA mutations are seemingly the most common driver mutations in breast cancer with H1047R and E545K being the most common of these, accounting together for around 60% of all PIK3CA mutations and have promising therapeutic implications. Given the low sensitivity and the high cost of current genotyping methods we sought to develop fast, simple and inexpensive assays for PIK3CA H1047R and E545K mutation screening in clinical material. The methods we describe are based on a real-time PCR including a mutation specific primer combined with a non-productive oligonucleotide which inhibits wild-type amplification and a parallel internal control reaction. We demonstrate consistent detection of PIK3CA H1047R mutant DNA in genomic DNA extracted from frozen breast cancer biopsies, FFPE material or cancer cell lines with a detection sensitivity of approximately 5% mutant allele fraction and validate these results using both Sanger sequencing and deep next generation sequencing methods. The detection sensitivity for PIK3CA E545K mutation was approximately 10%. We propose these methods as simple, fast and inexpensive diagnostic tools to determine PIK3CA mutation status

    Mutations of PIK3CA in gastric adenocarcinoma

    Get PDF
    BACKGROUND: Activation of the phosphatidylinositol 3-kinase (PI3K) through mutational inactivation of PTEN tumour suppressor gene is common in diverse cancer types, but rarely reported in gastric cancer. Recently, mutations in PIK3CA, which encodes the p110α catalytic subunit of PI3K, have been identified in various human cancers, including 3 of 12 gastric cancers. Eighty percent of these reported mutations clustered within 2 regions involving the helical and kinase domains. In vitro study on one of the "hot-spot" mutants has demonstrated it as an activating mutation. METHODS: Based on these data, we initiated PIK3CA mutation screening in 94 human gastric cancers by direct sequencing of the gene regions in which 80% of all the known PIK3CA mutations were found. We also examined PIK3CA expression level by extracting data from the previous large-scale gene expression profiling study. Using Significance Analysis of Microarrays (SAM), we further searched for genes that show correlating expression with PIK3CA. RESULTS: We have identified PIK3CA mutations in 4 cases (4.3%), all involving the previously reported hotspots. Among these 4 cases, 3 tumours demonstrated microsatellite instability and 2 tumours harboured concurrent KRAS mutation. Data extracted from microarray studies showed an increased expression of PIK3CA in gastric cancers when compared with the non-neoplastic gastric mucosae (p < 0.001). SAM further identified 2910 genes whose expression levels were positively associated with that of PIK3CA. CONCLUSION: Our data suggested that activation of the PI3K signalling pathway in gastric cancer may be achieved through up-regulation or mutation of PIK3CA, in which the latter may be a consequence of mismatch repair deficiency

    Highly frequent PIK3CA amplification is associated with poor prognosis in gastric cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The phosphoinositide 3-kinase (PI3K)/Akt pathway plays a fundamental role in cell proliferation and survival in human tumorigenesis, including gastric cancer. <it>PIK3CA </it>mutations and amplification are two major causes of overactivation of this pathway in human cancers. However, until this work, there was no sound investigation on the association of <it>PIK3CA </it>mutations and amplification with clinical outcome in gastric cancer, particularly the latter.</p> <p>Methods</p> <p>Using direct sequencing and real-time quantitative PCR, we examined <it>PIK3CA </it>mutations and amplification, and their association with clinicopathological characteristics and clinical outcome of gastric cancer patients.</p> <p>Results</p> <p><it>PIK3CA </it>mutations and amplification were found in 8/113 (7.1%) and 88/131 (67%) gastric cancer patients, respectively. <it>PIK3CA </it>amplification was closely associated with increased phosphorylated Akt (p-Akt) level. No relationship was found between <it>PIK3CA </it>mutations and clinicopathological characteristics and clinical outcome in gastric cancer. <it>PIK3CA </it>amplification was significantly positively associated with cancer-related death. Importantly, Kaplan-Meier survival curves revealed that the patients with <it>PIK3CA </it>amplification had significantly shorter survival times than the patients without <it>PIK3CA </it>amplification.</p> <p>Conclusions</p> <p>Our data showed that <it>PIK3CA </it>mutations were not common, but its amplification was very common in gastric cancer and may be a major mechanism in activating the PI3K/Akt pathway in gastric cancer. Importantly, Kaplan-Meier survival curves revealed that <it>PIK3CA </it>amplification was significantly positively associated with poor survival of gastric cancer patients. Collectively, the PI3K/Akt signaling pathway may be an effective therapeutic target in gastric cancer.</p

    A phase I dose-escalating study of DaunoXome, liposomal daunorubicin, in metastatic breast cancer

    Get PDF
    The aims of this phase I study were to establish the maximum tolerated dose, safety profile and activity of liposomal daunorubicin, DaunoXome (NeXstar Pharmaceuticals), in the treatment of metastatic breast cancer. DaunoXome was administered intravenously over 2 h in 21 day cycles and doses were increased from 80 to 100, 120 and 150 mg m2. Sixteen patients were enrolled. A total of 70 cycles of DaunoXome were administered. The maximum tolerated dose was 120 mg m2, the dose-limiting toxicity being prolonged grade 4 neutropenia or neutropenic pyrexia necessitating dose reductions at 120 and 150 mg m2. Asymptomatic cardiotoxicity was observed in three patients: grade 1 in one treated with a cumulative dose of 800 mg m2 and grade 2 in two, one who received a cumulative dose of 960 mg m2 and the other a cumulative dose of 600 mg m2 with a previous neoadjuvant doxorubicin chemotherapy of 300 mg m2. Tumour response was evaluable in 15 patients, of whom two had objective responses, six had stable disease and seven had progressive disease. In conclusion, DaunoXome is associated with mild, manageable toxicities and has anti-tumour activity in metastatic breast cancer. The findings support further phase II evaluation of DaunoXome alone and in combination with other standard non-anthracycline cytotoxic or novel targeted agents. Although the dose-limiting toxicity for DaunoXome was febrile neutropenia at 120 mg m2, we would recommend this dose for further evaluation, as the febrile neutropenia occurred after four or more cycles in three of the four episodes seen, was short lived and uncomplicated
    • …
    corecore