122 research outputs found
Dynamics of vortex tangle without mutual friction in superfluid He
A recent experiment has shown that a tangle of quantized vortices in
superfluid He decayed even at mK temperatures where the normal fluid was
negligible and no mutual friction worked. Motivated by this experiment, this
work studies numerically the dynamics of the vortex tangle without the mutual
friction, thus showing that a self-similar cascade process, whereby large
vortex loops break up to smaller ones, proceeds in the vortex tangle and is
closely related with its free decay. This cascade process which may be covered
with the mutual friction at higher temperatures is just the one at zero
temperature Feynman proposed long ago. The full Biot-Savart calculation is made
for dilute vortices, while the localized induction approximation is used for a
dense tangle. The former finds the elementary scenario: the reconnection of the
vortices excites vortex waves along them and makes them kinked, which could be
suppressed if the mutual friction worked. The kinked parts reconnect with the
vortex they belong to, dividing into small loops. The latter simulation under
the localized induction approximation shows that such cascade process actually
proceeds self-similarly in a dense tangle and continues to make small vortices.
Considering that the vortices of the interatomic size no longer keep the
picture of vortex, the cascade process leads to the decay of the vortex line
density. The presence of the cascade process is supported also by investigating
the classification of the reconnection type and the size distribution of
vortices. The decay of the vortex line density is consistent with the solution
of the Vinen's equation which was originally derived on the basis of the idea
of homogeneous turbulence with the cascade process. The obtained result is
compared with the recent Vinen's theory.Comment: 16 pages, 16 figures, submitted to PR
Friction force on a vortex due to the scattering of superfluid excitations in helium II
The longitudinal friction acting on a vortex line in superfluid He is
investigated within a simple model based on the analogy between such vortex
dynamics and that of the quantal Brownian motion of a charged point particle in
a uniform magnetic field. The scattering of superfluid quasiparticle
excitations by the vortex stems from a translationally invariant interaction
potential which, expanded to first order in the vortex velocity operator, gives
rise to vortex transitions between nearest Landau levels. The corresponding
friction coefficient is shown to be, in the limit of elastic scattering
(vanishing cyclotron frequency), equivalent to that arising from the Iordanskii
formula. Proposing a simple functional form for the scattering amplitude, with
only one adjustable parameter whose value is set in order to get agreement to
the Iordanskii result for phonons, an excellent agreement is also found with
the values derived from experimental data up to temperatures about 1.5 K.
Finite values of the cyclotron frequency arising from recent theories are shown
to yield similar results. The incidence of vortex-induced quasiparticle
transitions on the friction process is estimated to be, in the roton dominated
regime, about 50 % of the value of the friction coefficient, 8 % of which
corresponds to roton-phonon transitions and 42 % to roton
ones.Comment: 15 pages, 4 figures; typos corrected, to be published in PR
The sensitivity of the vortex filament method to different reconnection models
We present a detailed analysis on the effect of using different algorithms to
model the reconnection of vortices in quantum turbulence, using the
thin-filament approach. We examine differences between four main algorithms for
the case of turbulence driven by a counterflow. In calculating the velocity
field we use both the local induction approximation (LIA) and the full
Biot-Savart integral. We show that results of Biot-Savart simulations are not
sensitive to the particular reconnection method used, but LIA results are.Comment: 9 pages, 9 figure
Tree method for quantum vortex dynamics
We present a numerical method to compute the evolution of vortex filaments in
superfluid helium. The method is based on a tree algorithm which considerably
speeds up the calculation of Biot-Savart integrals. We show that the
computational cost scales as Nlog{(N) rather than N squared, where is the
number of discretization points. We test the method and its properties for a
variety of vortex configurations, ranging from simple vortex rings to a
counterflow vortex tangle, and compare results against the Local Induction
Approximation and the exact Biot-Savart law.Comment: 12 pages, 10 figure
Particles-vortex interactions and flow visualization in He4
Recent experiments have demonstrated a remarkable progress in implementing
and use of the Particle Image Velocimetry (PIV) and particle tracking
techniques for the study of turbulence in He4. However, an interpretation of
the experimental data in the superfluid phase requires understanding how the
motion of tracer particles is affected by the two components, the viscous
normal fluid and the inviscid superfluid. Of a particular importance is the
problem of particle interactions with quantized vortex lines which may not only
strongly affect the particle motion, but, under certain conditions, may even
trap particles on quantized vortex cores. The article reviews recent
theoretical, numerical, and experimental results in this rapidly developing
area of research, putting critically together recent results, and solving
apparent inconsistencies. Also discussed is a closely related technique of
detection of quantized vortices negative ion bubbles in He4.Comment: To appear in the J Low Temperature Physic
Model confidence sets and forecast combination: an application to age-specific mortality
Background: Model averaging combines forecasts obtained from a range of models, and it often produces more accurate forecasts than a forecast from a single model.
Objective: The crucial part of forecast accuracy improvement in using the model averaging lies in the determination of optimal weights from a finite sample. If the weights are selected sub-optimally, this can affect the accuracy of the model-averaged forecasts. Instead of choosing the optimal weights, we consider trimming a set of models before equally averaging forecasts from the selected superior models. Motivated by Hansen et al. (2011), we apply and evaluate the model confidence set procedure when combining mortality forecasts.
Data & Methods: The proposed model averaging procedure is motivated by Samuels and Sekkel (2017) based on the concept of model confidence sets as proposed by Hansen et al. (2011) that incorporates the statistical significance of the forecasting performance. As the model confidence level increases, the set of superior models generally decreases. The proposed model averaging procedure is demonstrated via national and sub-national Japanese mortality for retirement ages between 60 and 100+.
Results: Illustrated by national and sub-national Japanese mortality for ages between 60 and 100+, the proposed model-average procedure gives the smallest interval forecast errors, especially for males. Conclusion: We find that robust out-of-sample point and interval forecasts may be obtained from the trimming method. By robust, we mean robustness against model misspecification
US hegemony and the origins of Japanese nuclear power : the politics of consent
This paper deploys the Gramscian concepts of hegemony and consent in order to explore the process whereby nuclear power was brought to Japan. The core argument is that nuclear power was brought to Japan as a consequence of US hegemony. Rather than a simple manifestation of one state exerting material ‘power over' another, bringing nuclear power to Japan involved a series of compromises worked out within and between state and civil society in both Japan and the USA. Ideologies of nationalism, imperialism and modernity underpinned the process, coalescing in post-war debates about the future trajectory of Japanese society, Japan's Cold War alliance with the USA and the role of nuclear power in both. Consent to nuclear power was secured through the generation of a psychological state in the public mind combining the fear of nuclear attack and the hope of unlimited consumption in a nuclear-fuelled post-modern world
- …